K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 4 2022

Bài toán này dựa trên bài toán mà bạn đã đăng hôm trước: nếu \(m^2+n^2\) chia hết cho 7 thì cả m và n đều chia hết cho 7.

Đặt \(\left\{{}\begin{matrix}5a+2b=m^2\\2a+5b=n^2\end{matrix}\right.\) 

\(\Rightarrow7\left(a+b\right)=m^2+n^2\)

\(\Rightarrow m^2+n^2⋮7\)

\(\Rightarrow m;n\) đều chia hết cho 7

\(\Rightarrow m^2;n^2\) đều chia hết cho 49

\(\Rightarrow\left\{{}\begin{matrix}5a+2b⋮49\\2a+5b⋮49\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3\left(a-b\right)⋮49\\7\left(a+b\right)⋮49\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b⋮7\\a+b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a⋮7\\2b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a⋮7\\b⋮7\end{matrix}\right.\) (đpcm)

6 tháng 4 2022

Cám ơn thầy ạ !
 Đây là 1 loạt những bài toán về chuyên đề đồng dư thức , thầy đã nhiệt tình giúp đỡ em, em cám ơn ạ

 

NV
6 tháng 4 2022

Nhận xét: với mọi n nguyên thì \(n^2\equiv\left\{0;1;2;4\right\}\left(mod7\right)\)

Giả sử a;b tồn tại 1 số không chia hết cho 7

\(\Rightarrow a^2+b^2\equiv\left\{1;2;3;4;5;6;8\right\}\left(mod7\right)\)

\(\Rightarrow a^2+b^2\) luôn ko chia hết cho 7 (trái với giả thiết)

Vậy điều giả sử là sai hay \(a;b\) đều chia hết cho 7

7 tháng 5 2020

Đề thi Olympic 30/4 Môn Toán 2018 lần thứ XXIV

Vài dòng đầu tớ chứng minh BĐT phụ bạn có thể làm trực tiếp luôn nhé ! Dùng phương pháp tiếp tuyến là OK thôi !

Ta dễ có các biến đổi sau:

\(\sqrt{a^2-a+1}\left(a^2+a+1\right)=\sqrt{\left(a^2-a+1\right)\left(a^2+a+1\right)\left(a^2+a+1\right)}\)

\(=\sqrt{\left(a^4+a^2+1\right)\left(a^2+a+1\right)}\)

\(=\sqrt{\left[\left(a^2+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left[\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\right]}\)

\(\ge\left(a^2+\frac{1}{2}\right)\left(a+\frac{1}{2}\right)+\frac{3}{4}\)

\(=\frac{2a^3+a^2+a+2}{2}\)

\(\Rightarrow\sqrt{a^2-a+1}\ge\frac{2a^3+a^2+a+2}{2\left(a^2+a+1\right)}=a-\frac{1}{2}+\frac{3}{2}\left(\frac{1}{a^2+a+1}\right)\)

Chứng minh tương tự ta có được các bất đẳng thức sau:

\(\sqrt{b^2-b+1}=b-\frac{1}{2}+\frac{3}{2}\cdot\frac{1}{b^2+b+1};\sqrt{c^2-c+1}=c-\frac{1}{2}+\frac{3}{2}\cdot\frac{1}{c^2+c+1}\)

Như vậy ta cần chứng minh \(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\) với abc = 1

Đây là BĐT Vacs quen thuộc !!!! Bạn làm câu hỏi của mình có câu trả lời của tth_new có dùng Vacs và mình đã làm rồi nha !!!!!

23 tháng 2 2020

b)\(VT-VP=\Sigma_{cyc}\left(a+b+1\right)\left(\frac{1}{8}\left(a+b-2\right)^2+\frac{3}{8}\left(a-b\right)^2\right)\)

P/s: Cách phân tích cụ thể xin phép giấu.