K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2015

câu d:

Tam giác BCF nội tiếp (O;BC/2) có cạnh BC là đường kính

=> Tam giác BCF vuông tại F

=>góc BFC=90 độ

Xét 2 tam giác: tam giác CHF và tam giác CFB có:

góc C chung

góc CHF=góc CFB (=90 độ)

Do đó, tam giác CHF đồng dạng với tam giác CFB (g.g)

=> góc CFH=góc CBF (1)

Tứ giác ABFC nội tiếp (O;BC/2)

=> góc CFH=góc ABC (cùng chắn cung AC) (2)

Từ (1) và (2)=> góc CBF=góc ABC (3)

Mà tia BC nằm giữa tia AB và BF (4)

Từ (3) và (4)=> BC là tia phận giác của góc ABF (đpcm)

1 tháng 4 2018

Vẽ hình giúp mình với được không ạ 

6 tháng 2 2019

A B C O E F S T I Q K D N J L P M G R

a) +) Dễ thấy: ^BAD = ^CAO (Cùng phụ ^ABC). Mà ^BAI = ^CAI nên ^OAI = ^DAI 

Suy ra: ^OAI = ^DAO/2 = ^BAI - ^BAD = ^BAC/2 - 900 + ^ABC = ^BAC/2 - (^BAC+^ABC+^ACB)/2 + ^ABC

= (^ABC + ^ACB)/2 = \(\frac{\alpha-\beta}{2}=\frac{\alpha^2-\beta^2}{2\left(\alpha+\beta\right)}=\frac{\alpha^2-\beta^2}{sđ\widebat{BAC}}\) (đpcm).

+) Kẻ đường kính AG của đường tròn (O). Dễ thấy: Tứ giác BICJ nội tiếp, gọi (BICJ) cắt AC tại R khác C.

Do AK=2R nên AK = AG. Ta có: ^ARB = ^ARI + ^BRI = ^IBC + ^ICB = (^ABC+^ACB)/2 = ^ABI + ^IBC = ^ABR

=> \(\Delta\)BAR cân tại A => AB = AR. Kết hợp với AK=AG, ^BAG = ^RAK (cmt) => \(\Delta\)ABG = \(\Delta\)ARK (c.g.c)

=> ^ABG = ^ARK = 900 => ^KRC = ^KDC = 900 => Tứ giác DKCR nội tiếp 

=> AD.AK = AR.AC = AI.AJ => Tứ giác DIJK nội tiếp (đpcm).

b) \(\Delta\)KAG cân tại A có phân giác AI => AI vuông góc KG hay AM vuông góc KG. Mà AM vuông góc GM

Nên K,G,M thẳng hàng => K,M,G,N thẳng hàng => AM vuông góc KN tại M

Ta thấy: M là trung điểm IJ, KM vuông góc IJ tại M nên \(\Delta\)KIJ cân tại K

Xét đường tròn (KIJ): KI = KJ, KN vuông góc IJ => KN là đường kính của (KIJ)

Mà D thuộc đường tròn (KIJ) (cmt) => ^KDN = 900 => ND vuông góc AK tại D => N,L,D thẳng hàng

Xét \(\Delta\)AKN có: AM vuông góc KN, ND vuông góc AK, AM và ND cùng đi qua L

=> L là trực tâm \(\Delta\)AKN => KL vuông góc AN (đpcm).

c) Gọi P là trực tâm của \(\Delta\)AJQ

Do \(\Delta\)KIJ cân tại K => ^KIJ = ^KJI. Có tứ giác DIJK nội tiếp => ^KIJ = ^KDJ => ^KDJ = ^KJI

Từ đó: \(\Delta\)DKJ ~ \(\Delta\)JKA (g.g) => KJ2 = KD.KA => KQ2 = KD.KA => \(\Delta\)KQD ~ \(\Delta\)KAQ (c.g.c)

Suy ra: ^QDJ = ^KDQ + ^KDJ = ^AQK + ^AJK = 1800 - ^QAJ = 1800 - ^QPJ => Tứ giác PQDJ nội tiếp

^PDJ = ^PQJ => ^PDK + ^KDJ = ^PDK + ^QJA = ^PQJ => ^PDK = ^PQJ - ^QJA = 900

=> PD vuông góc AD. Mà BC vuông góc AD tại D nên PD trùng BC hay P nằm trên BC (đpcm).

d) Ta thấy: ^ABC > ^ACB (\(\alpha>\beta\)) => ^BAD < ^CAD. Lại có: ^BAI = ^CAI, ^BAD + ^CAD = ^BAI + ^CAI = ^BAC

Suy ra ^BAD < ^BAI => B và I nằm khác khía so với AD => D thuộc [BF]

Hạ IS, IT vuông góc với AC,AB thì F thuộc [DT] => Thứ tự các điểm trên BC là B,D,F,T,C. Do đó: ^IFC = ^DFK < 900

Ta xét thứ tự các điểm trên cạnh AC: 

+) A,S,E,C: Vì IS vuông góc AC, theo thứ tự này thì ^IEC > 900. Cũng dễ có: \(\Delta\)IES = \(\Delta\)IFT (Ch.cgv)

=> ^IES = ^IFT < 900  => ^IFT + ^IEC = 1800 => Tứ giác FIEC nội tiếp => ^ECF = ^DIK

Mà ^DIK = ^DJK = ^DAI = \(\frac{\alpha-\beta}{2}\) nên \(\beta=\frac{\alpha-\beta}{2}\Rightarrow\alpha=3\beta\) (*)

+) A,E,S,C: Trong TH này thì ^IEC < 900 => ^IFT + ^IEC < 1800 => ^ECF + ^EIF > 1800

=> ^ECF > ^DIK hay \(\beta>\frac{\alpha-\beta}{2}\Rightarrow\alpha< 3\beta\)   (**)

Từ (*) và (**) suy ra: \(\alpha\le3\beta\) (đpcm).

2 tháng 5 2021

a, ta có \(\widehat{ADB}\)là góc nội tiếp chắn nửa đường tròn => \(\widehat{ADB}=90^0\)hay \(\widehat{EDB}=90^0\)

Xét tứ giác BDEH có : 

\(\widehat{EHB}=90^0\left(CH\perp AB\right)\)

\(\widehat{EDB}=90^0\left(cmt\right)\)

=> tugiac BDEH noi tiep

b,

ta có \(\widehat{ADC}=\widehat{ABC}\)( BDEH noitiep cmt)

mà \(\widehat{ABC}+\widehat{CAB}=90^0\)(góc ACB=90 độ, góc nt chắn nửa đg tròn)

  \(\widehat{ACH}+\widehat{CAB}=90^0\)( góc AHC=90 độ vì  CH vuông với AB)

=> \(\widehat{ABC}=\widehat{ACH}\)

=> \(\widehat{ACH}=\widehat{ADC}\left(=\widehat{ABC}\right)\)hay góc ADC= góc ACE

Xét tam giác ACE và tam giác ADC

\(\widehat{ADC}=\widehat{ACE}\left(cmt\right)\)

góc CAD chung

=> tam giác ACE đồng dạng với tam giác ADC (g-g)

=> \(\frac{AC}{AD}=\frac{AE}{AC}\)

=> \(AC^2=AD.AE\)(1)

Tam giác ABC vuông tại C có AH là đường cao

=> BC2= BH.BA  (hethucluong) (2)        

(1);(2) => \(AC^2+BC^2=AE.AD+BH.BA\)

mà AC2+ BC2= AB2 ( pytago trong tam giác ABC vuông ở C)

=> \(AB^2=AE.AD+BH.BA\)

29 tháng 5 2019

O A B C E I D F
a) xét tứ giác ABOC, ta có:
\(\widehat{OBA}=90^O\)
\(\widehat{OCA}=90^O\)
=> \(\widehat{OBA}+\widehat{OCA}=180^O \)
=> tứ giác ABOC nội tiếp
b) Xét tam giác OBC, ta có:
OB = OC = R 
=> tam giác OBC cân tại O
=> OE vừa là đường cao vừa là đường phân giác dường phân giác góc O.
=> BE = CE 
=> OA vuông góc BC ( đường kính đi qua trung điểm của dây cung thì vuông góc với dây đó)
Xét tam giác AOB và tam giác ABE, ta có:
góc A chung
góc OBA = BEA = 90o
=>AOB đồng dạng ABE
=> \(\frac{AB}{AE}=\frac{OB}{BE}\)
=>AB.BE = OB.AE
câu c và d cậu tự làm nhé tớ ko giải dc xin lỗi cậu nha

16 tháng 3 2018

Tự vẽ hình nha
c) AE là tia phân giác của góc CAB => sđcEC=sđcEB=> EC=EB=> OE vuông góc vs BC
Góc OAE= góc OEA(1)
OE song song vs AH (cùng vuông góc vs BC)=> OEA=EAH(2)
Từ (1) và (2) => góc OAE= góc EAH => AE là tia phân giác của góc OAH

3 tháng 5 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đường thẳng q: Tiếp tuyến của c qua A Đường thẳng q: Tiếp tuyến của c qua A Đoạn thẳng h: Đoạn thẳng [A, E] Đoạn thẳng i: Đoạn thẳng [B, E] Đoạn thẳng j: Đoạn thẳng [C, E] Đoạn thẳng k: Đoạn thẳng [O, C] Đoạn thẳng l: Đoạn thẳng [O, B] Đoạn thẳng m: Đoạn thẳng [A, B] Đoạn thẳng n: Đoạn thẳng [A, C] Đoạn thẳng p: Đoạn thẳng [B, D] Đoạn thẳng a: Đoạn thẳng [B, P] Đoạn thẳng b: Đoạn thẳng [C, Q] Đoạn thẳng d: Đoạn thẳng [P, Q] Đoạn thẳng g_1: Đoạn thẳng [B, C] Đoạn thẳng i_1: Đoạn thẳng [M, A] Đoạn thẳng k_1: Đoạn thẳng [O, M] O = (-0.28, -0.29) O = (-0.28, -0.29) O = (-0.28, -0.29) Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d

a. Ta thấy ngay tứ giác OBEC có hai góc vuông đối nhau nên nó là tứ giác nội tiếp.

b. Câu này cô thấy cần sửa đề thành AB.AP = AD.AE mới đúng.

Gọi Aq là tiếp tuyến tại A của đường tròn (O). Khi đó ta có: \(\widehat{APE}=\widehat{BAq}\) (so le trong)

Mà \(\widehat{BAq}=\widehat{BDA}\) (Cùng chắn cung BA) nên \(\widehat{APE}=\widehat{BDA}\)

Vậy thì \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{AB}{AE}=\frac{AD}{AP}\Rightarrow AB.AP=AE.AD\)

c. +) Ta thấy \(\Delta BDE\sim\Delta ABE\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{BE}{AE}\)

Tương tự \(\Delta CDE\sim\Delta ACE\left(g-g\right)\Rightarrow\frac{CD}{AC}=\frac{DE}{AE}\)

Mà BE = CE nên \(\frac{BD}{AB}=\frac{CD}{AC}\)

Lại có \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{BD}{EP}=\frac{AB}{AE}\Rightarrow EP=\frac{BD.AE}{AB}\)

Tương tự \(\Delta ACD\sim\Delta AEQ\left(g-g\right)\Rightarrow\frac{AC}{AE}=\frac{CD}{EQ}\Rightarrow EQ=\frac{CD.AE}{AC}=\frac{BD.AE}{AB}=EP\)

Vậy EP = EQ.

+) Ta thấy ngay \(\Delta ABC\sim\Delta AQP\Rightarrow\frac{BC}{QP}=\frac{AC}{AP}\Rightarrow\frac{BC:2}{QP:2}=\frac{AC}{QP}\)

\(\Rightarrow\frac{MC}{PE}=\frac{AC}{AP}\)

Lại có  \(\widehat{ACM}=\widehat{APE}\) (Cùng bằng \(\widehat{BDA}\))

Từ đó suy ra \(\Delta AMC\sim\Delta AEP\Rightarrow\widehat{MAC}=\widehat{PAE}\)

3 tháng 5 2017

d. Ta có BD.AC = AB.CD

Lại có do ABCD là tứ giác nội tiếp nên 

AD.BC = AB.CD + AC.BD = 2AB.CD (Định lý Ptoleme)  \(\Rightarrow2MC.AD=2AB.CD\Rightarrow MC.AD=AB.CD\)

\(\Rightarrow\frac{MC}{AB}=\frac{CD}{AD}\)

Lại thấy \(\widehat{BAD}=\widehat{BCD}\Rightarrow\Delta BAD\sim\Delta MCD\left(c-g-c\right)\)

Mà \(\Delta BAD\sim\Delta MAC\Rightarrow\Delta MCD\sim\Delta MAC\)

\(\Rightarrow\frac{MC}{MA}=\frac{MD}{MC}\Rightarrow MA.MD=MC^2=\frac{BC^2}{4}.\)