K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VN
2 tháng 12 2015
a) xet tam giac HOB va tam giac HOA co:
OH chung
BH = HA
goc BHO = goc AHO ( = 90 do)
suy ra hai tam giac nay bang nhau (c.g.c)
suy ra OB = OA (1)
Xet tam giac AOK va tam giac COK co:
AK = KC
OK chung
goc AKO = goc CKO
suy ra hai tam giac nay bang nhau (c.g.c)
suy ra OA = OC (2)
tu (1), (2) suy ra OB=OC (dpcm)
b) ta co tam giac OBH = tam giac OAH (phan a) nen goc BOA = goc AOH (3)
tam giac AOK = tam giac COK (phan a) nen goc AOK = goc COK (4)
Lai co goc xOy = goc HOA + goc KOA
tu (3), (4) suy ra goc xOy = goc BOH +COK = a
vay goc BOC = goc BOH+ goc HOA + goc AOK + goc KOC = a+a = 2a (dpcm)
5 tháng 10 2019
Câu hỏi của ๛Ąкเйą ℌ๏àйǥ Ŧỷツ - Toán lớp 7 - Học toán với OnlineMath
(Bn tự vẽ hình nhé )
a, Xét tam giác vuông BOH và tam giác vuông AOH có:
OH: cạnh chung
BH = AH ( giả thiết )
=> \(\Delta BOH=\Delta AOH\)( 2 cạnh góc vuông )
=> OB = OA (1)
Tương tự chứng minh \(\Delta AOK=\Delta COK\)( 2 cạnh góc vuông )
=> OA = OC (2)
Từ (1) và (2)
=> OB = OC
b, Vì \(\Delta BOH=\Delta AOH\)=> \(\widehat{BOH}=\widehat{AOH}\)
Vì \(\Delta AOK=\Delta COK\)=> \(\widehat{AOK}=\widehat{COK}\)
Ta có:
\(\widehat{BOC}=\widehat{BOH}+\widehat{AOH}+\widehat{AOK}+\widehat{COK}\)
\(\Rightarrow\widehat{BOC}=2\widehat{AOH}+2\widehat{AOK}\)
\(=2\left(\widehat{AOH}+\widehat{AOK}\right)\)
\(=2.\widehat{xOy}\)
\(=2a\)
Vậy \(\widehat{BOC}=2a\)
a. OB = OC vì đều bằng OA, bạn tự chứng minh.
b. < BOC = 2a, bạn tự chứng minh.
Nhớ tích đúng nha.