K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

a) Xét tam giác BHA và BHE có:

BD chung

\(\widehat{ABD}\)=\(\widehat{EBD}\)(vì BD là phân giác \(\widehat{B}\))

\(\widehat{BHA}\)=\(\widehat{BHE}\)(vì AH vuông góc với Bd tại H)

\(\Rightarrow\)Tam giác BHA=tam giac BHE(c.g.v-g.n.k)

b) Xét Tam giác BDA và tam giác BDE có

BD chung

BA=BE( vì tam giac BHA = tam giac BHE( chứng minh phần a))

ABD=EBD( vì BD là phân giác của\(\widehat{B}\))

\(\Rightarrow\)Tam giác BDA = Tam giác BDE(c.g.c)

\(\Rightarrow\)\(\widehat{BEA}\)=\(\widehat{A}\)= 90o(2 canh tương ứng và \(\widehat{A}\)= 90o)

ED vuông góc với B tại E

23 tháng 3 2020

A B C D K E H

d, DA= DE do tam giác ABD = tam giác EBD (Câu b)

=> tam giác DAE cân tại D (đn)

=> ^DAE = ^DEA (tc)            (1)

có : AK _|_ BC (gt) ; DE _|_ BC (câu b)

=> DE // AK 

=> ^DEA = ^EAK (slt) và (1)

=> ^DAE = ^EAK mà AE nằm giữa AD và AK 

=> AE là phân giác của ^CAK (đn)

c, AD = DE

DE < CD do tam giác CDE vuông tại E

=> AD < DC

16 tháng 8 2021

a) Xét tam giác BHA và BHE có:

BD chung

ˆABD^=ˆEBD^(vì BD là phân giác ˆBB^)

ˆBHA^=ˆBHE^(vì AH vuông góc với Bd tại H)

Tam giác BHA=tam giac BHE(c.g.v-g.n.k)

b) Xét Tam giác BDA và tam giác BDE có

BD chung

BA=BE( vì tam giac BHA = tam giac BHE( chứng minh phần a))

ABD=EBD( vì BD là phân giác củaˆBB^)

⇒⇒Tam giác BDA = Tam giác BDE(c.g.c)

⇒⇒ˆBEA^=ˆA^= 90o(2 canh tương ứng và ˆA^= 90o)

ED vuông góc với B tại E

c, AD = DE

DE < CD do tam giác CDE vuông tại E

=> AD < DC

d, DA= DE do tam giác ABD = tam giác EBD (Câu b)

=> tam giác DAE cân tại D (đn)

=> ^DAE = ^DEA (tc)            (1)

có : AK _|_ BC (gt) ; DE _|_ BC (câu b)

=> DE // AK 

=> ^DEA = ^EAK (slt) và (1)

=> ^DAE = ^EAK mà AE nằm giữa AD và AK 

=> AE là phân giác của ^CAK (đpcm)

16 tháng 8 2021

a) Vì EH ⊥ BC ( gt )

=> ΔBHE vuông tại H

Xét tam giác vuông BAE và tam giác vuông BHE có :

BE chung

∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )

=> ΔBAE = ΔBHE ( cạnh huyền - góc nhọn )

b) Gọi I là giao điểm của AH và BE

Xét ΔABI và ΔHBI có :

BA = BH (ΔBAE = ΔBHE (cmt)

∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )

BI chung

=> ΔABI = ΔHBI ( c.g.c )

=> ∠AIB = ∠AIH ( 2 góc tương ứng )

Mà ∠AIB + ∠AIH = 1800 ( 2 góc kề bù )

=> ∠AIB = ∠AIH = 900

=> BI ⊥ AH (1)

Ta có: IA = IH ( ΔABI = ΔHBI ( cmt )

Mà I nằm giữa hai điểm A và H (2)

=> I là trung điểm của AH ( 3)

Từ (1) (2) (3) => BI là trung trực của AH

Hay BE là trung trực của AH

c) Xét ΔKAE và ΔCHE có:

∠KAE = ∠CHE ( = 900 )

AE = HE ( ΔBAE = ΔBHE (cmt)

∠AEK = ∠HEC ( 2 góc đối đỉnh )

=> ΔKAE = ΔCHE ( g.c.g )

=> EK = EC ( 2 cạnh tương ứng )

15 tháng 12 2017

Bạn xem lời giải bài tương tự tại đường link dưới nhé:

Câu hỏi của Nguyễn Ngọc Vy - Toán lớp 7 - Học toán với OnlineMath

28 tháng 4 2017

A B C D H E K

aXét 2 tam giác BHA và tam giác BHE có:

H1=H2=90

B1=B2(phân giác góc B)

BH chung

=> tam giác BHA = tam giác BHE(g.c.g)

b Chứng minh AK // DE mà 

MÀ AK vuông góc vs BC

=> ED vuông góc vs BC

28 tháng 4 2017

câu c và d bạn

27 tháng 3 2020

a, Xét △BHA vuông tại H và △BHE vuông tại H

Có: BH là cạnh chung

       ABH = EBH (gt)

=> △BHA = △BHE (cgv-gn)

b, Vì △BHA = △BHE (cmt) => BA = BE (2 cạnh tương ứng)

Xét △BAD và △BED

Có: AB = BE (cmt)

    ABD = EBD (gt)

   BD là cạnh chung

=> △BAD = △BED (c.g.c)

=> BAD = BED (2 góc tương ứng)

Mà BAD = 90o

=> BED = 90o

=> DE ⊥ BE   

=> DE ⊥ BC

c, Vì △BAD = △BED (cmt) => AD = ED (2 cạnh tương ứng)

Xét △EDC vuông tại E có: DE < DC (cạnh góc vuông nhỏ hơn cạnh huyền)

=> AD < DC 

d, Ta có: AD = ED (cmt) => △ADE vuông tại D => DAE = DEA 

Vì AK ⊥ BC (gt) và DE ⊥ BC (cmt)

=> AK // DE (từ vuông góc đến song song) 

=> KAE = AED (2 góc so le trong)

mà DAE = DEA  (cmt)

=> KAE = DAE => KAE = CAE

Mà AE nằm giữa AK, AC

=> AE là phân giác CAK

a) Xét ΔBHA vuông tại H và ΔBHE vuông tại H có 

BH chung

\(\widehat{ABH}=\widehat{EBH}\)(BH là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔBHA=ΔBHE(cạnh góc vuông-góc nhọn kề)

b) Ta có: ΔBHA=ΔBHE(cmt)

nên BA=BE(hai cạnh tương ứng)

Xét ΔBAD và ΔBED có 

BA=BE(cmt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBAD=ΔBED(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(đpcm)

23 tháng 4 2018

a) VÌ BE vuông góc với BD (gt) => BE là đường cao tam giác BAK 

   Vì BD phân giác (gt) => BE cũng là phân amgiác tam giác BAK

=> tam giác ABK là tam giác cân (Đ/lý)

23 tháng 4 2018

đểmình có động lực làm câu b) :)))