Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3}{x+y}=\frac{2}{y+z}=\frac{1}{x+z}=\frac{3+2+1}{x+y+y+z+x+z}=\frac{6}{2\left(x+y+z\right)}=\frac{3}{x+y+z}\)
\(\Rightarrow x+y=x+y+z\) \(\Rightarrow z=0\)
\(\Rightarrow P=\frac{2x+2y+2019z}{x+y-2020z}=\frac{2\left(x+y\right)+2019\cdot0}{x+y-2020\cdot0}=\frac{2\left(x+y\right)}{x+y}=2\)
Vậy P = 2
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x-2y+z}{y}=\frac{z-2x+y}{x}=\frac{x-2z+y}{z}=\frac{x-2y+z+z-2x+y+x-2z+y}{x+y+z}=0\)(vì x;y;z \(\ne\)0)
=> \(\hept{\begin{cases}\frac{x-2y+z}{y}=0\\\frac{z-2x+y}{x}=0\\\frac{x-2z+y}{z}=0\end{cases}}\) => \(\hept{\begin{cases}x-2y+z=0\\z-2x+y=0\\x-2z+y=0\end{cases}}\) => \(\hept{\begin{cases}x+z=2y\\y+z=2x\\x+y=2z\end{cases}}\)
Khi đó, ta có: A = \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)+2020\)
=> A = \(\left(\frac{x+y}{x}\right)\left(\frac{y+z}{y}\right)\left(\frac{x+z}{z}\right)+2020\)
=> A = \(\frac{2z}{x}\cdot\frac{2x}{y}\cdot\frac{2y}{z}+2020\)
=> A = \(8+2020=2028\)
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{9a}\)( 1 )
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\)( 2 )
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{4x-4y+z}{9c}\)( 3 )
Từ ( 1 ) , ( 2 ) và ( 3 )
\(\frac{x+2y-z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)hay \(\frac{9a}{x+2y-z}=\frac{9b}{2x+y-z}=\frac{9c}{4x-4y+z}\)
\(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)
=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)
=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)
=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)
=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)
Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)
Theo đề bài để tồn tại phân số: \(\frac{1}{x+y+z}\) ta có: \(x+y+z\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)
Thay vào đề bài ta có: \(\frac{\frac{1}{2}-x+1}{x}=\frac{\frac{1}{2}-y+2}{y}=\frac{\frac{1}{2}-z-3}{z}=2\)
Dễ dàng tìm được x;y;z rồi thay vào b thức
Ta có:
\(\frac{3}{x+y}=\frac{2}{y+z}=\frac{1}{z+x}\Rightarrow\frac{x+y}{3}=\frac{y+z}{2}=\frac{z+x}{1}=\frac{x+y+y+z+z+x}{3+2+1}=\frac{2\left(x+y+z\right)}{6}=\frac{x+y+z}{3}\)
\(\frac{x+y+z}{3}=\frac{x+y}{3}\Rightarrow z=0\)
Thay vào P, ta có:
\(P=\frac{2x+2y+2019z}{x+y-2020z}=\frac{2x+2y}{x+y}=\frac{2\left(x+y\right)}{x+y}=2\)
Vậy P=2