Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$20092009^{10}=(2009.10000+2009)^{10}=(2009.10001)^{10}$
$> (2009.2009)^{10}=(2009^2)^{10}=2009^{20}$
Vậy $20092009^{10}> 2009^{20}$
Bài 2: Để bài yêu cầu tính tỷ số nên mình nghĩ bạn đang viết đề thì phải?
Bài 3: Để bài cần bổ sung thêm điều kiện $x,y$ tự nhiên/ nguyên/..... chứ nếu $x,y$ là số thực thì có vô số giá trị bạn nhé.
Bài 4:
Vì $x_1,x_2,...,x_n$ nhận giá trị $-1$ hoặc $1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ cũng nhận giá trị $-1,1$
Xét $n$ số hạng $x_1x_2,x_2x_3,...,x_nx_1$. Vì $n$ số hạng này có tổng bằng $0$ nên trong đây số số có giá trị $1$ phải bằng số số có giá trị $-1$ ($=\frac{n}{2}$)
$\Rightarrow n\vdots 2$. Ta có:
$x_1x_2.x_2x_3.x_3.x_4....x_1x_n=(x_1x_2...x_n)^2=(-1)^{\frac{n}{2}}.1^{\frac{n}{2}}=(-1)^{\frac{n}{2}}$
Nếu $\frac{n}{2}$ lẻ thì $(x_1x_2..x_n)^2=-1< 0$ (vô lý). Do đó $\frac{n}{2}$ chẵn.
Hay $n\vdots 4$
1.
Ta có: \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)
\(\Rightarrow\frac{1}{2}a.\frac{1}{6}=\frac{2}{3}b.\frac{1}{6}=\frac{3}{4}c.\frac{1}{6}\)
\(\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow\hept{\begin{cases}a=5.12=60\\b=5.9=45\\c=5.8=40\end{cases}}\)
Vậy \(\hept{\begin{cases}a=60\\b=45\\c=40\end{cases}}\)
2. Đặt \(a_1+a_2+...+a_n=d\)
ÁP dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x_1}{a_1}=\frac{x_2}{a_2}=...=\frac{x_n}{a_n}=\frac{x_1+x_2+...+x_n}{a_1+a_2+...+a_n}=\frac{c}{d}\)
\(\Rightarrow x_1=\frac{c}{d}.a_1;x_2=\frac{c}{d}.a_2;....;x_n=\frac{c}{d}.a_n\)
Dài ngoằng nhìn phát ngán
a)\(\left(x^4\right)^{^3}=\frac{x^{18}}{x^7}\Leftrightarrow x^{12}=x^{18-7}\Leftrightarrow x^{12}=x^{11}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)