Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a làm theo hằng đẳng thức
câu b ta sẽ đc (b^2 +c^2 -a^2 -2bc )(b^2 +c^2 -a^2 +2bc ) = { (b-c)^2 -a^2 } {(b+c)^2-a^2}
theo bất đẳng thức trong tam giác thì hiệu 2 cạnh luôn nhỏ hơn cạnh còn lại nên {(b-c)^2-a^2} <0
mà {(b+c)^2-a^2} >0 \(\Rightarrow\)A<0
k cho mk cái nha
a, \(A=\left(b^2+c^2-a^2\right)-4b^2c^2\)
\(\Rightarrow A=\left(b^2+c^2-a^2\right)-\left(2bc\right)^{^2}\)
\(\Rightarrow A=\left(b^2+c^2-a^2-2bc\right)\left(b^2+c^2-a^2+2bc\right)\)
\(\Rightarrow A=\left[\left(b-c\right)^2-a^2\right]\left[\left(b+c\right)^2-a^2\right]\)
\(\Rightarrow A=\left(c-b-a\right)\left(c-b+a\right)\left(c+b-a\right)\left(c+b+a\right)\)
b, Như bạn Trần Thị Nhung
M = ( a2 + b2 - c2 )2 - 4a2b2
= ( a2 + b2 - c2 )2 - ( 2ab )2 = (a2 + b2 - c2 + 2ab )( a2 + b2 - c2 - 2ab )
= [( a + b )2 - c2 ] . [( a - b )2 -c2 ]
= ( a + b + c )( a+ b - c )( a - b + c )( a - b -c )
Đề đúng: \(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
a) Ta có:
\(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
\(M=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)
\(M=\left[\left(a^2-2ab+b^2\right)-c^2\right]\left[\left(a^2+2ab+b^2\right)-c^2\right]\)
\(M=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(M=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)
b) Nếu a,b,c là độ dài 3 cạnh của tam giác thì:
\(\hept{\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b-c>0\\a-b+c>0\\a-b-c< 0\end{cases}}\) , mà a + b + c > 0
=> \(M< 0\)
olm mootj trang web mat day nhat hanh tinh dot nhien tru 20 diem ma khong lien quan j khong tra loi cau hoi linh tinh ma cung tru diem mat day : bo lao
a)phân tích đa thức ra nhân tử
M = (a2+b2-c2)2 - 4a2b2 =(a2+b2-c2)2 - (2ab)2 = [ (a2+b2-c2) - 2ab] . [ (a2+b2-c2) + 2ab]
= [(a-b)2-c2] .[(a+b)2-c2] = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
b)chứng minh nếu a,b,c là số đo các cạnh của tam giác thì M<0
M = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
ta biết trong 1 tam giác tổng 2 cạnh luôn lớn hơn cạnh còn lại. Nếu a,b,c là số đo các cạnh của tam giác
ta luôn có: a+b+c > 0; a+b-c>0 ; a-b+c> 0; a-b-c = a -(b+c) <0
Vậy tích M = (a-b-c)(a-b+c)(a+b-c)(a+b+c) <0
Ehhh ohhh
Sinh con ra bằng câu hát ru quen thuộc
Dìu đôi chân mong con lớn không (Con lớn khôn, nghe lời mẹ)
Dù mồ hôi thấm vai chỉ cần thấy con cười Là những âu lo phiền muộn tan trôi
Ấn nút nhớ thời gian hãy ngưng quay lại Đổ cơn mưa yêu thương đến đây (Mang đến đây, bao nụ cười)
Chà mạnh đi vết chai sạn trên tay mẹ
Thả đi giấc mơ này (Chắp cánh con tung bay)
Thả vào mây nhẹ nhàng đưa theo cơn gió
Mai này con lớn lên Mang ngàn lời ca cất lên
Đem một tình yêu thiết tha, giúp cha dang đôi tay ôm lấy vai mẹ Mai này con lớn lên
Kiên cường vượt qua bão giông
Chỗ dựa bình yên khi hoàng hôn xuống bình minh ấm bên mẹ mãi thôi
Uh la la la la la lal a la
Uh la la la la la lal a la
Con nay đã lớn không muốn phụ giúp mẹ những việc giản đơn mà
Thu dọn dẹp nhà cửa, giặc giũ quần áo cứ để con no mà
Con nhận ra một điều là
Con không cần nữa những món quà Đôi tay con giờ đây có thể đảm nhận hết mọi công việc nhỏ trong nhà.
Nghe lời mẹ dặn, không làm mẹ tổn thương, không khiến mẹ phải lo Nghe lời mệ dặn, soạn bài vở chu đáo, học chăm ngoan ngày ngày
Ấn nút nhớ, thả giắc mơ, con chìm vào những vần thơ
Đổ đong đầy, chà hao gầy, ưu phiền trong mẹ tan theo làn mây
Ấn nút nhớ thời gian hãy ngưng quay lại
Đổ cơn mưa yêu thương đến đây (Mang đến đây, bao nụ cười)
Chà mạnh đi vết chai sạn trên tay mẹ
Thả đi giấc mơ này (Chắp cánh con tung bay) Thả vào mây nhẹ nhàng đưa theo cơn gió
Mai này con lớn lên
Mang ngàn lời ca cất lên
Đem một tình yêu thiết tha, giúp cha dang đôi tay ôm lấy vai mẹ
Mai này con lớn lên
Kiên cường vượt qua bão giông
Chỗ dựa bình yên khi hoàng hôn xuống bình minh ấm bên mẹ mãi thôi
Uh la la la la la lal a la
Uh la la la la la lal a la
Đinh Đức Tài: bài này là bài Ấn nút nhớ ... thả giấc mơ của Sơn Tùng M-TP đúng hông
a) Áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(M=\left(b^2+c^2-a^2\right)^2-4b^2c^2=\left(b^2+c^2-2bc-a^2\right)\left(b^2+c^2+2bc-a^2\right)=\left[\left(b-c\right)^2-a^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)
b) Nếu a,b,c là độ dài các cạnh của tam giác thì ta có : \(\hept{\begin{cases}a+b>c>0\\b+c>a>0\\a+c>b>0\end{cases}\Leftrightarrow\hept{\begin{cases}b-c-a< 0\left(1\right)\\b-c+a>0\left(2\right)\\b+c-a>0\left(3\right)\end{cases}}}\)
Nhân (1) , (2) , (3) theo vế cùng với a+b+c>0 được M<0
c) Dễ thấy rằng : Trong phân tích M thành nhân tử, ta thấy có xuất hiện thừa số (a+b+c)
Mà a+b+c chia hết cho 6 nên suy ra M chia hết cho 6