\(\frac{1}{6};a_3=\frac{7}{20};a_{_4}=\frac{27}{50}\) ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

Ta có : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)

Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)

\(\Rightarrow\frac{a_1}{a_2}=-5\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+....+a_{2017}}{a_2+a_3+a_4+.....+a_{2018}}\) (2)

Từ (1) và (2)

=> S = -5

8 tháng 1 2017

sao tự hỏi rồi tự trả lời vậy bạn :)

27 tháng 3 2018

Ta có:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4};...;\frac{a_{2015}}{a_{2016}}=\frac{a_{2016}}{a_{2017}}\)

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2016}}{a_{2017}}=k\)

\(\Rightarrow\frac{a_1^{2016}}{a_2^{2016}}=\frac{a_2^{2016}}{a_3^{2016}}=...=\frac{a_{2016}^{2016}}{a_{2017}^{2016}}=\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=k^{2016}\left(1\right)\)

Ta lại có: 

\(k^{2016}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2016}}{a_{2017}}=\frac{a_1}{a_{2017}}\left(2\right)\)

Từ (1) và (2) \(\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=\frac{a_1}{a_{2017}}\)

4 tháng 1 2017

Ta có \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)

Mặt khác \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\) (do \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.....\frac{a_{2017}}{a_{2018}}\))

\(\Rightarrow\frac{a_1}{a_2}=-5\) (1) Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.....\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+...+a_{2017}}{a_2+a_3+...+a_{2018}}\)(2)

Từ (1) và (2) suy ra \(S=\frac{a_1+a_2+...+a_{2017}}{a_2+a_3+...+a_{2018}}=-5\)

20 tháng 11 2019

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+a_3+...+a_{2012}}{a_1+a_2+a_3+...+a_{2012}}=1\)(Vì \(a_1+a_2+a_3+...+a_{2012}\ne0\))

Khi đó \(a_1=a_2=a_3=...=a_{2012}\)

=> \(M=\frac{a_1^{2012}+a_2^{2012}+...+a_{2012}^{2012}}{\left(a_1+a_2+...+a_{2012}\right)^{2012}}=\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{1}{2012^{2011}}\)

20 tháng 11 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+...+a_{2012}}{a_2+a_3+...+a_1}=1\)

\(\Rightarrow a_1=a_2=a_3=...=a_{2012}\)

Khi đó M = \(\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{2012.a_1^{2012}}{2012^{2012}.a_1^{2012}}=\frac{2012}{2012^{2012}}=\frac{1}{2012^{2011}}\)

2 tháng 12 2015

Theo t/c của dãy tỉ số bằng nhau ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2013}}{a_{2014}}=\frac{a_{2014}}{a_1}=\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2014}+a_1}=1\)

=> Đặt \(a_1=a_2=a_3=...=a_{2014}=k\)

=> M = \(\frac{k^2+k^2+...+k^2}{ \left(k+k+...+k\right)^2}=\frac{2014k^2}{\left(2014.k\right)^2}=\frac{2014.k^2}{2014^2.k^2}=\frac{1}{2014}\)

 

 

8 tháng 7 2021

\(\text{Theo tính chất dãy tỉ số bằng nhau , ta có :}\)

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2013}}{a_{2014}}=\frac{a_{2014}}{a_1}=\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2014}+a_1}=1\)

\(\Rightarrow\text{Đặt }a_1=a_2=a_3=...=a_{2014}=k\)

\(\Rightarrow\text{ M = }\frac{k^2+k^2+...+k^2}{\left(k+k+...+k\right)^2}=\frac{2014k^2}{\left(2014.k\right)^2}=\frac{2014.k^2}{2014^2.k^2}=\frac{1}{2014}\)

\(\text{Vậy M =}\frac{1}{2014}\)

\(\text{~~Học tốt~~}\)

28 tháng 11 2016

b,ấp dụng tính chất dãy tỉ số = nhau ta có:

\(\frac{a1-1}{100}\) =.....=\(\frac{a100-100}{1}\) =\(\frac{\left(a1+...+a100\right)-\left(1+...+100\right)}{100+99+..+1}\) = \(\frac{5050}{5050}\)  = 1

từ \(\frac{a1-1}{100}\) = 1  suy ra :a1-1=100 =) a1=101

........................................................................

từ \(\frac{a100-100}{100}\) = 1 suy ra: a100-100=1 =) a100=101

vậy a1=a2=a3=...=a100=101

4 tháng 11 2018

Cho tam giác ABC vuông ở A(AB < AC), đường cao AH, biết AB = 6cm. Đường trung trực của BC cắt các đường thẳng AB, AC, BC theo thứ tự ở D, E và F biết DE = 5cm, EF = 4cm. Chứng minh:

a) Tam giác FEC đồng dạng với tam giác FBD

b) Tam giác AED đồng dạng với tam giác HAC

c) Tính BC, AH, AC

Cho tam giác ABC - Các bài toán hình lớp 7 về tam giác