Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của BC
N là trung điểm của AB
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AP và MN=AP
Xét tứ giác ANMP có
MN//AP
MN=AP
Do đó: ANMP là hình bình hành
mà \(\widehat{PAN}=90^0\)
nên ANMP là hình chữ nhật
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
b: Xét ΔAED có AH/AE=AM/AD
nên HM//ED
=>ED//CB
Xet ΔCAE có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCAE can tại C
=>CA=CE=BD
Vì BC//ED và BD=CE
nên BCDE là hình thang cân
c: Xét tứ giác AHCK có
N là trung điểm chung của AC và HK
góc AHC=90 độ
=>AHCK là hình chữ nhật
a: Độ dài cạnh hình thoi là:
\(\sqrt{\left(\dfrac{AC}{2}\right)^2+\left(\dfrac{BD}{2}\right)^2}=5\left(cm\right)\)
b: Xét tứ giác BOCE có
M là trung điểm của BC
M là trung điểm của OE
Do đó: BOCE là hình bình hành
mà \(\widehat{BOC}=90^0\)
nên BOCE là hình chữ nhật
c: Xét tứ giác ODCE có
OD//CE
OD=CE
Do đó: ODCE là hình bình hành
Suy ra: Hai đường chéo OC và DE cắt nhau tại trung điểm của mỗi đường
mà N là trung điểm của OC
nên N là trung điểm của DE
hay D,N,E thẳng hàng