Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)
a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3
A= 12017 + 02018 + (-1)2019 = 0
một số mũ 2 đều lớn hơn hoặc 0
mà cả 3 số cộng lại bằng 1
=> có 2 số bằng 0 và 1 số bằng 1 mới cho kết quả bằng 1
mà số 0 mũ b.n cx bằng 0, số 1 mũ b.n cx bằng 1
=> a2017+b2018+c2019=1
bài 1
ab+bc+ca=0
=>ab+bc=-ca
ta có (a+b)(b+c)(c+a)/abc
=> (ab+ac+bc+b2)(c+a)/abc
=> (0+b2)(c+a)/abc
=>b2c+b2a/abc
=>b(ab+bc)/abc
=>b(-ac)/abc
=>-abc/abc=-1
Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
Thya các giá trị của a, b, c., d vào M . Tính đc M = 0
Bài 2:
Đặt \(2017-x=a;2019-x=b;2x-4036=c\)
\(\Rightarrow a+b+c=0\)
Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)
Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)
Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)
\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)
a2+b2+c2=ab+bc+ca
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0
<=>(a-b)2+(b-c)2+(c-a)2=0
<=>a=b=c
mà a+b+c=3<=>a=b=c=1
=>P=0