K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2023

a)xét 2 tam giác vuông ABH và tam giác ACH có:

AB=AC(GT)

góc ABH=góc ACH(GT)

\(\Rightarrow\) tam giácABH = tam giác ACH(cạnh huyền-góc nhọn)

b)xét 2 tam giác ANG và tam giác CNK có:

CN=AN(GT)

góc KNC=góc ANG(2 góc đối đỉnh)

GN=KN(GT)

\(\Rightarrow\)tam giác ANG=tam giác CNK(c-g-c)

\(\Rightarrow\)Góc GAN=góc KCN

Vì góc GAN=góc KCN,mà 2 góc này ở vị trí so le trong

\(\Rightarrow\)AH//CK

 

31 tháng 8 2020

a, △ABH=△ACH (ch-cgv) (tự cm)

hoặc △ABH=△ACH (ch-gn) (tự cm)

b, Xét \(\Delta ANG\)\(\Delta CNK\) có:

AN = CN ( vì N là tđ của AC)

ANG = CNK ( vì đđ)

GN = KN (gt)

=> \(\Delta ANG=\Delta CNK\) (c-g-c).

=> GAN = KCN (hai góc t/ứng).

Mà GAN và KCN ở vị trí slt nên:

=> AG//CK (đpcm).

c, Do tam giác ABC có: N là tđ của AC nên:

=> BN là đg trung tuyến của AC cắt AH tại G (1)

Do tam giác ABC có: AH vừa là đg cao nên:

=> AH cũng là đg trung tuyến của BC (t/ch trong tam giác cân) (2)

Xét \(\Delta ABC\) có: Từ (1) và (2) => G là trọng tâm của \(\Delta ABC\)

=> \(BG=2GN\) (3)

Ta có: GN + NK = GK

hay GN + GN = GK

=> GK = 2GN (4)

Từ (3) và (4) => BG = GK

=> G là tđ của BK (đpcm)

Câu d có vấn đề nhờ bạn xem lại cho mk cái!

Chúc bạn học tốt! Nhớ theo dõi cho mk vs ạ.

31 tháng 8 2020

Gửi hộ vào đây luôn đi

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

=>ΔAHB=ΔAHC

b: Xét tứ giác AKCG có

N là trung điểm chung của AC và KG

=>AKCG là hình bình hành

=>AG//CK

c: GB=2GN

GK=2GN

=>GB=GK

=>G là trung điểm của BK

3 tháng 5 2023

Tự kẻ hình nha

a) - Vì tam giác ABC cân tại A (gt)
=> AB = AC (định nghĩa)
     góc ABC = góc ACB (dấu hiệu)
- Vì AH vuông góc với BC (gt)
=> tam giác ABH vuông tại H (tc)
     tam giác ACH vuông tại H (tc)
- Xét tam giác vuông ABH và tam giác vuông ACH, có: 
    + AB = AC (cmt)
    + Chung AC 
=> tam giác vuông ABH = tam giác vuông ACH (cạnh huyền - cạnh góc vuông)

b) - Vì tam giác vuông ABH = tam giác vuông ACH (cmt)
=> BH = CH (2 cạnh tương ứng)
=> AH là đường trung tuyến tam giác ABC (dấu hiệu)
- Vì N là trung điểm của AC (gt)
=> BN là đường trung tuyến tam giác ABC (dấu hiệu)
Mà G là giao điểm của BN và AH (gt)
=> G là trọng tâm của tam giác ABC (tc)
- Xét tam giác ANG và tam giác CNK, có: 
    + NG = NK (gt)
    + AN = CN (N là trung điểm của AC)
    + góc ANG = góc CNG (đối đỉnh)
=> tam giác ANG và tam giác CNK (cgc)
=> góc AGN = góc CKN (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong 
=> AG // CK (dấu hiệu)

c) - Vì G là trọng tâm của tam giác ABC (cmt)
=> BG = 2/3 BN (tc)
=> NG = 1/3 BN 
Mà NK = NG (gt)
=> NK = 1/3 BN 
=> NK + NG = 1/3 BN + 1/3 BN 
=> GK = 2/3 BN
Mà BG = 2/3 BN (cmt)
=> GK = BG 
=> G là trung điểm BK

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

Lời giải:

a)

Xét tam giác $ABH$ và $ACH$ có:
\(AB=AC\) do tam giác $ABC$ đều

\(BH=CH=\frac{BC}{2}\)

\(AH\) chung

\(\Rightarrow \triangle ABH=\triangle ACH(c.c.c)\)

b) Vì tam giác $ABC$ đều nên \(\widehat{DBM}=\widehat{ACH}\)

\(\widehat{ACH}=\widehat{ECN}\) (đối đỉnh)

\(\Rightarrow \widehat{DBM}=\widehat{ECN}\)

Xét 2 tam giác vuông $BDM$ và $CEN$ có:

\(\left\{\begin{matrix} BD=CE\\ \widehat{DBM}=\widehat{ECN}\end{matrix}\right.\Rightarrow \triangle BDM=\triangle CEN(ch-gn)\)

\(\Rightarrow DM=EN\)

Lại có: \(DM\parallel EN\) (cùng vuông góc với BC)

\(\Rightarrow \widehat{MDI}=\widehat{NEI}\) ( so le trong)

Xét tam giác $MDI$ và $NEI$ có:

\(\widehat{MDI}=\widehat{NEI}(cmt)\)

\(DM=EN\)

\(\widehat{DMI}=\widehat{ENI}=90^0\)

\(\Rightarrow \triangle MDI=\triangle NEI(g.c.g)\Rightarrow DI=EI\), do đó $I$ là trung điểm của $DE$

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

c) Vì $I$ là trung điểm của $DE$ (đã chứng minh ở phần b)

\(KI\perp DE\) nên $KI$ là đường trung trực của $DE$

Do đó: \(KD=KE\)

Mặt khác: Vì theo phần a, \(\triangle AHB=\triangle AHC\Rightarrow \widehat{AHB}=\widehat{AHC}\)

\(\widehat{AHB}+\widehat{AHC}=180^0\Rightarrow \widehat{AHB}=\widehat{AHC}=90^0\)

Do đó: \(AH\perp BC\) hay $KH\perp BC$

Mà $H$ là trung điểm $BC$ nên $KH$ là đường trung trực của $BC$

Do đó: \(KB=KC\)

Xét tam giác $BDK$ và $CEK$ có:

\(BD=CE\) (giả thiết)

\(BK=CK\) (cmt)

\(DK=EK\) (cmt)

\(\Rightarrow \triangle BDK=\triangle CEK(c.c.c)\)

\(\Rightarrow \widehat{DBK}=\widehat{ECK}\)

Lại thấy: \(\widehat{DBK}=\widehat{ABK}=\widehat{ACK}\) (dễ thấy do \(\triangle ABK=\triangle ACK(c.c.c)\) ))

Do đó: \(\widehat{ECK}=\widehat{ACK}\) . Hai góc này lại là 2 góc bù nhau nên mỗi góc bằng $90^0$

\(\Rightarrow AC\perp CK\) (đpcm)

23 tháng 5 2018

a )

ta có : \(\widehat{C_1}=\widehat{C_2}\) ( 2 góc đối đỉnh ) 

mà \(\widehat{C_1}=\widehat{B}\) ( tam gíac ABC cân tại A ) 

Do do : \(\widehat{C_2}=\widehat{B}\)

xét \(\Delta ABDva\Delta ICE,co:\)

AB = AC = IC ( gt ) 

BD=CE ( gt )

\(\widehat{C_2}=\widehat{B}\) (cmt ) 

Do do : \(\Delta ABD=\Delta ICE\left(c-g-c\right)\)

28 tháng 6 2020

a.Xét tam giác AMH và tam giác NMB có 

          MA = MN [ gt ]

         góc AMH = góc NMB [ đối đỉnh ]

         HM = BM [ gt ]

Do đó ; tam giác AMH = tam giác NMB [ c.g.c ]

\(\Rightarrow\)góc AHM = góc NBM 

mà bài cho góc AHM = 90độ

\(\Rightarrow\)góc NBM = 90độ

Vậy NB vuông góc với BC 

b.Theo câu a ; tam giác AMH = tam giác NMB 

\(\Rightarrow\)AH = NB [ cạnh tương ứng ]

Mặt khác ; Xét tam giác AHB vuông tại H có 

AB lớn hơn AH 

\(\Rightarrow\)AB lớn hơn NB