Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
c) Kẻ AH vuông với EF
=> AHEK là hình chữ nhật
=> ^HEA = ^EAK
Mà ^EAK = ^BAK ( AD phân giác ). (1)
Ta có: EF // AD ( d // AD )
=> ^BAK = ^AFH. (2)
Từ (1) và (2) =. ^EAK = ^AFH
Mà ^EAK = ^AEH ( cmt )
=> ^AFH = AEH
=> Tam giác AFE cân tại A
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó:ΔABD=ΔAED
Suy ra: DB=DE
b: Ta có: ΔABE cân tại A
mà AK là đường phân giác
nên K là trung điểm của BE
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b:Ta có: AB=AE
DB=DE
Do đó: AD là đường trung trực của BE
a) Xét ∆ADC có :
CH là trung tuyến AD ( AH = HD )
CH là đường cao
=> ∆ADC cân tại C
=> CH là phân giác DCA
Hay CB là phân giác DCA
b) Xét ∆ vuông BHA và ∆ vuông DHE ta có :
BHA = DHE
HA = HD
=> ∆BHA = ∆DHE (cgv-gn)
=> BAH = HDE
Mà 2 góc này ở vị trí so le trong
=> BA//DE
c) Chứng minh DKA = 90°
=> HK = HD = HA ( tính chất )
=> HK = \(\frac{1}{2}\:AD\)
Cần gấp lắm hả
cần gấp