K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2016

\(=a^5+a^3b^2+b^3a^2+b^5-\left(a+b\right)\)

\(=a^5+b^5+\left(a^3b^2+b^3a^2\right)-\left(a+b\right)\)

\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)

\(=a^5+b^5+\left[\left(ab\right)^2-1\right]\left(a+b\right)\)

Mà \(ab=1\Rightarrow\left(ab\right)^2-1=1^2-1=0\)

\(\Rightarrow\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)=a^5+b^5+0=a^5+b^5\)

Vậy ...

23 tháng 7 2017

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\) ( \(a^3+b^3=a^5+b^5\))

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\) (luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\)

13 tháng 7 2016

(a3+b3)(a2+b2)-(a+b)

=a5+a3b2+ b3a2+b5-(a+b)

=a5+b5+a2b2(a+b)-(a+b)

=a5+b5+(a+b)-(a+b)(vì ab=1 nên a2b2=1)

=a5+b5(điều phải chứng minh)

\(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\)

\(=a^5+a^3b^2+b^3a^2+b^5-\left(a+b\right)\)

\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)

\(=a^5+b^5+\left(a+b\right)\)

\(=a^5+b^5\)

7 tháng 4 2017

Biến đổi VP:

\(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\)

\(=a^5+b^5+a^3b^2+a^2b^3-\left(a+b\right)\)

\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)

\(=a^5+b^5+\left(a+b\right)-\left(a+b\right)\)

\(=a^5+b^5\left(ĐPCM\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:
Ta có:

$(a^3+b^3)(a^2-b^2)-(a+b)=a^5+a^3b^2+a^2b^3+b^5-(a+b)$

$=(a^5+b^5)+(a^3b^2+a^2b^3)-(a+b)$

$=(a^5+b^5)+a^2b^2(a+b)-(a+b)=a^5+b^5+(a+b)-(a+b)=a^5+b^5$

(đpcm)

17 tháng 12 2018

a) Ta có:

\(5^2=25\equiv-1\left(mod13\right)\)

\(\Rightarrow\left\{{}\begin{matrix}5^{2004}=\left(5^2\right)^{1002}\equiv\left(-1\right)^{1002}\left(mod13\right)\equiv1\left(mod13\right)\\5^{2002}=\left(5^2\right)^{1001}\equiv\left(-1\right)^{1001}\left(mod13\right)\equiv-1\left(mod13\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5^{2005}=5^{2004}.5\equiv1.5\left(mod13\right)\equiv5\left(mod13\right)\\5^{2003}=5^{2002}.5\equiv\left(-1\right).5\left(mod13\right)\equiv-5\left(mod13\right)\end{matrix}\right.\)

\(\Rightarrow5^{2005}+5^{2003}\equiv5+\left(-5\right)\left(mod13\right)\equiv0\left(mod13\right)\)

Vậy...

19 tháng 12 2018

mod?

8 tháng 9 2018

Ta có :

a : 5 dư 3 \(\Rightarrow a=5k+3\left(k\ge0\right)\left(1\right)\)

b : 5 dư 2 \(\Rightarrow b=5k_1+2\left(k_1\ge0\right)\left(2\right)\)

Từ ( 1 ) ; ( 2 )

\(\Rightarrow ab=\left(5k+3\right)\left(5k_1+2\right)\)

\(\Rightarrow ab=25kk_1+15k_1+10k+6\)

\(\Rightarrow ab=5\left(5kk_1+3k_1+2k+1\right)+1\)

\(\Rightarrow ab:5\) dư 1 \(\left(đpcm\right)\)

10 tháng 9 2018

Thanks