Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.
Thay x=-2 và B ta có :
\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)
b) Rút gọn :
\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)
\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
Xấu nhỉ ??
a,\(A=\frac{6x+12}{\left(x+2\right)\left(2x-6\right)}=\frac{6\left(x+2\right)}{2\left(x+2\right)\left(x-3\right)}=\frac{3}{x-3}\)
b, Giá trị của x để phân thức có giá trị bằng (-2) :
\(\frac{3}{x-3}=-2\Rightarrow x=1,5\)
Bài 1:
a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)
b: Thay x=1/3 vào A, ta được:
\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)
a) Ta có: A = \(\left(\frac{x}{x-1}+\frac{x}{x^2-1}\right):\left(\frac{2}{x^2}-\frac{2-x^2}{x^3+x^2}\right)\)
A = \(\left(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2\left(x+1\right)}{x^2\left(x+1\right)}-\frac{2-x^2}{x^2\left(x+1\right)}\right)\)
A = \(\left(\frac{x^2+x+x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2x+2-2+x^2}{x^2\left(x+1\right)}\right)\)
A = \(\left(\frac{x^2+2x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x^2+2x}{x^2\left(x+1\right)}\right)\)
A = \(\frac{x\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x^2\left(x+1\right)}{x\left(x+2\right)}\)
A = \(\frac{x^2}{x+1}\)
b) ĐKXĐ: x \(\ne\)\(\pm\)1; x \(\ne\)0; x \(\ne\)-2
Ta có: A = 4
<=> \(\frac{x^2}{x+1}=4\)
<=> x2 = 4(x + 1)
<=> x2 - 4x - 4 = 0
<=>(x2 - 4x + 4) - 8 = 0
<=> (x - 2)2 = 8
<=> \(\orbr{\begin{cases}x-2=\sqrt{8}\\x-2=-\sqrt{8}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\sqrt{2}+2\\x=2-2\sqrt{2}\end{cases}}\)(tm)
Vậy ...
c) Ta có: A < 0
<=> \(\frac{x^2}{x+1}< 0\)
Do x2 \(\ge\)0 => x + 1 < 0
=> x < -1
Vậy để A < 0 thì x < -1 và x khác -2
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
a. A=\(1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(=1+\left(\frac{x+1+x+1-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right).\frac{x\left(x^2-x+1\right)}{x^2\left(x-2\right)}\)
\(=1+\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1+\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)
b.\(\left|x-\frac{3}{4}\right|=\frac{5}{4}\Rightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
Với \(x=2\Rightarrow A=\frac{2-1}{2+1}=\frac{1}{3}\)
Với \(x=-\frac{1}{2}\Rightarrow A=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)