Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)
A=(c^2-(a-b)^2).((a+b)^2-c^2)
A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)
Do c+b-a>0
c+a-b>0
a+b-c>0
a+b+c>0
=>A>0
@Hà Nhung Huyền Trang
Lời giải:
\(A=(2ab)^2-(a^2+b^2-c^2)^2=[2ab+(a^2+b^2-c^2)][2ab-(a^2+b^2-c^2)]\)
\(=[(a+b)^2-c^2][c^2-(a-b)^2]=(a+b-c)(a+b+c)(c-a+b)(c+a-b)\)
\(=(a+b+c)(a+b-c)(b+c-a)(c+a-b)>0\) theo BĐT tam giác
Do đó ta có đpcm.
A = 2a2b2 + 2b2c2 + 2a2c2 − a4 − b4 − c4
<=> A = 4a2c2 − ( a4+b4 + c4 − 2a2b2 + 2a2c2 − 2b2c2 )
<=> A = 4a2c2 − ( a2 − b2 + c2)2
<=> A = ( 2ac + a2 − b2 + c2 ) ( 2ac − a2 + b2 − c2 )
<=> A = [ (a+c)2 − b2 ] ( b2 − (a−c)2)
<=> A = ( a+b+c) (a+c−b) (b+a−c) (b−a+c)
Mà a, b, c là 3 cạnh của tam giác nên: Mà a, b, ca, b, c là 33 cạnh của tam giác nên:\
a+b+c>0
a+c−b>0
b+a−c>0
b−a+c>
=> (a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
A>0 (Dpcm)
Từ giả thiết suy ra
(a-b)^2+(b-c)^2+(a-c)^2=0 (nhân bung cái này sẽ ra cái giả thiết ban đầu).
Từ đó suy ra: a=b, b=c và c=a. (Do tổng của 3 bình phương mà lại bằng 0 tức là các bình phương đó đều phải bằng 0). Suy ra tam giác đó đều
P/s: Tham khảo nhé
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)\)
Do a;b;c là độ dài 3 cạnh tam giác nên \(c>a-b;c>b-a;a+b+c>0;a+b>c\)
\(\Rightarrow c-a+b>0;c+a-b>0;a+b+c>0;a+b-c>0\)
Nên \(\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)>0\)
Hay \(A>0\)(đpcm)
A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)
A=(c^2-(a-b)^2).((a+b)^2-c^2)
A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)
Do c+b-a>0
c+a-b>0
a+b-c>0
a+b+c>0
=>A>0
a^2 -b^2 -c^2 +2bc = a^2 -(b^2 +c^2 -2bc)
= a^2 -(b-c)^2
= (a-b+c)(a+b-c)
Theo bất đẳng thức tam giác, ta có:
a+c>b và a+b>c
Suy ra: a-b+c >0 và a+b-c >0
Do đó: (a-b+c)(a+b-c) >0
Vậy a^2 - b^2 -c^2 + 2bc >0
Chúc bạn học tốt.