Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta sẽ chứng minh rằng tổng số các giá trị \(c_i\)và \(d_j\)nhận giá trị \(-1\)là một số chẵn.
Thật vậy, giả sử bảng ban đầu đang là chỉ toán số \(1\).
Ta sẽ điền thêm các dấu \(-\)vào các ô có ghi số \(-1\).
Với mỗi bước điền như vậy, thì tích các số trên hàng và cột chứa ô ta vừa điền đều thay đổi giá trị từ \(1\)sang \(-1\)hoặc ngược lại, nên tổng các tích các số trên dòng và cột có giá trị \(-1\)sẽ tăng thêm \(2\)hoặc giảm xuống \(2\)hoặc không đổi.
Mà ban đầu số các tích của các số trên dòng và cột là \(0\).
Do đó ta có đpcm.
Ta có:
\(d_1+d_2+...+d_n+c_1+c_2+...+c_n=0\)(1) khi và chỉ khi số giá trị \(c_i\)và \(d_j\)nhận giá trị \(-1\)và \(1\)bằng nhau, tức là cùng bằng \(n\).
Do đó với \(n\)chẵn thì (1) có thể xảy ra, \(n\)lẻ thì (1) không thể xảy ra.
Muốn tính tổng của một dãy số có quy luật cách đều chúng ta thường hướng dẫn học sinh tính theo các bước như sau:
Bước 1: Tính số số hạng có trong dãy: (Số hạng lớn nhất của dãy - số hạng bé nhất của dãy) : khoảng cách giữa hai số hạng liên tiếp trong dãy + 1
Bước 2: Tính tổng của dãy: (Số hạng lớn nhất của dãy + số hạng bé nhất của dãy) x số số hạng có trong dãy : 2