Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow c=\frac{2ab}{a+b}\)
\(\frac{a-c}{c-b}=\frac{a-\frac{2ab}{a+b}}{\frac{2ab}{a+b}-b}=\frac{\frac{a^2+ab-2ab}{a+b}}{\frac{2ab-ab-b^2}{a+b}}=\frac{a^2+ab-2ab}{2ab-ab-b^2}=\frac{a.\left(a-b\right)}{b.\left(a-b\right)}=\frac{a}{b}\)(ĐPCM)
\(\left|2x-27\right|^{2017}+\left(3y+10\right)^{2012}\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)(làm tắt nha, có gì bn thêm vào)
câu 2 : | 2x - 27 |\(^{2011}\)+ ( 3y + 10 ) \(^{2012}\)=0
=> \(\left|2x-27\right|^{2011}\)lớn hơn hoặc = 0 (1)
=> \(\left(3y+10\right)^{2012}\)>hoặc = 0(2)
mà (1) + (2) =0
nên => \(\left|2x-27\right|^{2011}=0\)và \(\left(3y+10\right)^{2012}=0\)
\(\left|2x-27\right|^{2011}=0^{2011}\) \(\left(3y+10\right)^{2012}=0^{2012}\)
\(\left|2x-27\right|=0\) 3y + 10 = 0
2x = 27 3y = -10
x = 27 : 2 y = -10 : 3
x = 13,5 y = \(\frac{-10}{3}\)
Câu 1:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Lập bảng:
P/s: Edogawa Conan: Cái bảng của bạn cho mình cop nha! Thanks! Tí mik trả bạn 1 ! OK?
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Suy ra -5/4 < x < 19/7
Hay -1,25 < x < 2,(714285)
Mặt khác x thuộc Z nên x = -1, 0, 1, 2
Câu 2:
2xy + 4y = 6
2 (xy + 2y) = 6
=> xy + 2y = 6 / 2 = 3
=> xy + 2y = 3
=> y (x + 2) = 3
Từ đó lập bảng phân tích 3 = 1 . 3 = (-1) . (-3)
Mik khỏi lập bảng!
Từ bảng trên ta có y = {-3; -1; 1; 3}
Câu 3:
x + y = 8, x + z = 10, y + z = 12
=> (x + y) + (x + z) + (y + z) = 8 + 10 + 12 = 30
=> 2(x + y + z) = 30
=> x + y + z = 15
Đến đây thì dễ rồi! ^^
Câu 4:
(x + 3) = +5 Hoặc -5
Nhưng đề hỏi là x^3 > 0 = .....
Nên ta chọn (x + 3) = 5 (tại nếu chọn x + 3 = -5 thì x sẽ < 0 dẫn đến x^3 < 0
Ta có x + 3 = 5
Từ đó có x = 8
Đến đây thì dễ dàng tính ra x^3 bằng mấy và thỏa mãn x > 0....
* ♥ * Xong! * ♫ *
* ♥ * nha! * ♫ *
C1: Lập bảng xét dấu tích:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Ta có:
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Vậy -5/4 < x < 19/7