Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Hình bình hành ABCD có \(\widehat{BAD}=90^0\)
nên ABCD là hình chữ nhật
b: ABCD là hình chữ nhật
=>AD//BC và AD=BC
AD=BC
AD=DE
Do đó: DE=CB
Xét tứ giác EDBC có
ED//BC
ED=BC
Do đó: EDBC là hình bình hành
=>EB cắt DC tại trung điểm của mỗi đường
=>I là trung điểm của EB
=>IE=IB
c: Xét ΔACK có
H,M lần lượt là trung điểm của AK,AC
=>HM là đường trung bình
=>HM//CK
=>CK//BD
Xét ΔDAK có
DH là đường cao, là đường trung tuyến
Do đó: ΔDAK cân tại D
=>DA=DK
mà DA=BC
nên DK=BC
Xét tứ giác BKCD có CK//BD
nên BKCD là hình thang
mà BC=KD
nên BKCD là hình thang cân
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Hình bình hành ABCD có \(\widehat{BAD}=90^0\)
nên ABCD là hình chữ nhật
b: ABCD là hình chữ nhật
=>AD//BC và AD=BC
AD//BC
D\(\in\)AE
Do đó: ED//BC
AD=BC
ED=DA
Do đó: BC=ED
Xét tứ giác EDBC có
ED//BC
ED=BC
Do đó: EDBC là hình bình hành
=>EB cắt DC tại trung điểm của mỗi đường
mà I là trung điểm của DC
nên I là trung điểm của EB
=>IE=IB
c: Xét ΔACK có
H,M lần lượt là trung điểm của AK,AC
=>HM là đường trung bình của ΔACK
=>HM//CK
=>CK//DB
Xét ΔDAK có
DH là đường cao
DH là đường trung tuyến
Do đó:ΔDAK cân tại D
=>DA=DK
mà DA=BC(ABCD là hình chữ nhật)
nên DK=BC
Xét tứ giác BKCD có CK//BD
nên BKCD là hình thang
Hình thang BKCD có CB=DK
nên BKCD là hình thang cân
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
góc BAD=90 độ
=>ABCD là hình chữ nhật
b: Xét tứ giác EDBC có
ED//BC
ED=BC
=>EDBC là hình bình hành
=>Eb cắt CD tại trung điểm của mỗi đường
=>ID=IB
gọi L là giao điểm của BD và AC.
Có: BL=LD, AL=LC => ABCD là hình bình hành.
Lại có ^A=90 => ABCD là HCN (ĐPCM)
b/ xét tam giác BCI và IED có:
BC=DE(.....)
^BCI = ^IDE=90 độ
CI = ID (.....)
=> tg BCI = tg IDE (c,g,c)
=> BI = IE (ĐPCM)
a: Xét tứ giác AHKC có
I là trung điểm chung của AK và HC
=>AHKC là hình bình hành
=>AC//HK
b: AC//HK
AC//HM
HK cắt HM tại H
=>H,M,K thẳng hàng
=>NC//MK
AHKC là hình bình hành
=>góc CKH=góc CAH
mà góc CAH=góc NMH(AMHN là hình chữ nhật)
nên góc CKM=góc NMK
=>CNMK là hình thang cân
c: AMHN là hình chữ nhật
=>O là trung điểm chung của AH và MN
Xét ΔCAH có
CO,AI là trung tuyến
CO cắt AI tại D
=>D là trọng tâm
=>AD=2/3AI=2/3*1/2*AK=1/3AK
=>AK=3AD
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
góc BAD=90 độ
Do đó: ABCD là hình chữ nhật
b: ED=DA
DA=CB
=>ED=CB
Xét tứ giác EDBC có
ED//BC
ED=BC
=>EDBC là hình bình hành
=>EB cắt DC tại trung điểm của mỗi đường
=>I là trung điểm của EB
=>IE=IB
c: Xét ΔACK có AH/AK=AM/AC
nên HM//CK
=>CK//BD
Xét ΔDAK có
DH vừa là đường cao, vừa là trung tuyến
=>ΔDAK cân tại D
=>DA=DK
mà DA=BC
nên DK=BC
Xét tứ giác CKBD có
CK//BD
CB=KD
=>CKBD là hình thang cân