Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, điều kiện xác định là \(x\ne1;x\ne-1\)
\(\frac{3x+3}{x^2-1}\)
\(=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{3}{x-1}\)
b, để \(\frac{3x+3}{x^2-1}=-2\Rightarrow\frac{3}{x-1}=-2\)
\(\Rightarrow-2x+2=3\)
\(\Rightarrow-2x=1\)
\(\Rightarrow x=-\frac{1}{2}\)
a. ĐKXĐ: x2 - 1\(\ne\)0 (=) x \(\ne\)\(\pm\)1
b. \(\frac{3x+3}{x^2-1}\)
\(=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{3}{x+1}\)với x \(\pm\)1
c. \(\frac{3}{x+1}=-2\)
\(\Rightarrow\)\(\left(x+1\right).\left(-2\right)=3\)
\(-2x-2=3\)
\(-2x=5\)
\(x=-\frac{5}{2}\)(t/m đk)
1, \(x^2\left(x-3\right)-4x+12=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
2, \(2a\left(x+y\right)-x-y=2a\left(x+y\right)-\left(x+y\right)=\left(2a-1\right)\left(x+y\right)\)
3, \(2x-4+5x^2-10x=2\left(x-2\right)+5x\left(x-2\right)=\left(2+5x\right)\left(x-2\right)\)
4, sửa đề :
\(6x^2-12x-7x+14=6x\left(x-2\right)-7\left(x-2\right)=\left(6x-7\right)\left(x-2\right)\)
5, \(xy-y^2-3x+3y=y\left(x-y\right)-3\left(x-y\right)=\left(y-3\right)\left(x-y\right)\)
a) x2(x-3)-4x+12
=x2(x-3)-4(x-3)
=(x-3)(x2-4)
=(x-3)(x-2)(x+2)
b) 2a(x+y)-x-y
=2a(x+y)-(x+y)
=(x+y)(2a-1)
c) 2x-4+5x2-10x
=2(x-2)+5x(x-2)
=(x-2)(2+5x)
d) 5x2-12x-7x+14
=5x2-19x+14
e) xy-y2-3x+3y
=y(x-y)-3(x-y)
=(x-y)(y-3)
#H
EM MỚI LỚP 3 LÊN EM KO BIẾT GÌ HẾT
CHẮC CHỊ HOẶC ANH NÊN TRA GOOGLE
a ) \(\frac{4x+3}{x^2-5},A=12x2+9x\)
Suy ra \(\frac{4x+3}{x^2-5}=\frac{\left(4x+3\right).3x}{\left(x^2-5\right).3x}=\frac{12x^2+9x}{3x^3-15x}\)
Chúc bạn học tốt !!!
\(P:\frac{4x-2-16}{2x+1}=\frac{4x^2+4x+1}{x-2}\)
\(\Rightarrow P=\frac{4x^2+4x+1}{x-2}.\frac{4x^2-16}{2x+1}\)
= \(\frac{\left(2x+1\right)^2}{x-2}.\frac{4.\left(x-2\right)\left(x+2\right)}{2x+1}\)
\(\Rightarrow P=4.\left(2x+1\right).\left(x+2\right)\)
\(=4.\left(2x^2+x+4x+2\right)\)
= \(8x^2+40x+8\)
Chúc bạn học tốt !!!
a, ĐỂ \(\frac{3x+3}{x^2-1}=\frac{3x+3}{\left(x+1\right)\left(x-1\right)}\) Xác định
\(\Rightarrow\left(x+1\right)\left(x-1\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}x+1\ne0\\x-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-1\\x\ne1\end{cases}}}\)
KL : \(x\ne\pm1\)
b ,
\(\frac{3x+3}{x^2-1}\)xác định
\(\Leftrightarrow x^2-1\ne0\Leftrightarrow x\ne\pm1\)
Vậy điều kiện xác định của \(\frac{3x+3}{x^2-1}\)là \(x\ne\pm1\)
\(\frac{3x+3}{x^2-1}=-2\)
\(\Leftrightarrow\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=-2\)
\(\Leftrightarrow\frac{3}{x-1}=-2\)
\(\Leftrightarrow3=-2\left(x-1\right)\)
\(\Leftrightarrow\frac{-3}{2}=x-1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(x=\frac{-1}{2}\)là giá trị cần tìm
bài 1 ;
\(\frac{-2}{x+5}\)Phân thức đối nghịch vs \(\frac{2}{x+5}\)
bài 2 :
\(\frac{1}{x-1}\)nghịch đảo vs \(x-1\)
bài 3 : ghi rõ đề hộ mk