K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2015

a2+b2+c2=ab+ac+bc

<=>2a2+2b2+2c2=2ab+2ac+2bc

<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0

<=>(a-b)2+(a-c)2+(b-c)2=0

<=>a-b=0 và a-c=0 và b-c=0

<=>a=b=c

15 tháng 3 2018

Áp dụng Bất Đẳng Thức Co-si ta có:

\(a^3+b^3+b^3\ge3ab^2\)

\(b^3+c^3+c^3\ge3bc^2\)

\(c^3+a^3+a^3\ge3ca^2\)

Cộng vế với vế của các Bất Đẳng Thức trên ta được:

\(3\left(a^3+b^3+c^3\right)\ge3\left(ab^2+bc^2+ac^2\right)\)

\(\Leftrightarrow a^3+b^3+c^3\ge ab^2+bc^2+ac^2\)

Dấu đẳng thức xảy ra khi và chỉ khi: \(\hept{\begin{cases}a=b\\b=c\Leftrightarrow a=b=c\\c=a\end{cases}}\)

2 tháng 7 2017

a) a2+b2+c2 = ab+bc+ca nhân 2 vào cả 2 vế, chuyển tất cả sang vế trái thành 3 HĐT=>đpcm

b) (a+b+c)2 = 3(a2+b2+c2) tách (a+b+c)2 thành a2+b2+c2+2ab+2bc+2ac, bỏ ngoặc vế phải, chuyển hết sang vế phaỉ tạo ra 3 HĐT=> dpcm

c) (a+b+c)2 = 3(ab+bc+ca) tách (a+b+c)2 thành a2+b2+c2+2ab+2bc+2ac, bỏ ngoặc vế phải, chuyển hết sang vế trái rồi làm như câu a

Hãy nhấn k nếu bạn thấy đây là câu tl đúng :)