Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
a) \(a\equiv2\left(mod13\right)\Rightarrow a^2\equiv4\left(mod13\right)\)
\(b\equiv3\left(mod13\right)\Rightarrow b^2\equiv9\left(mod13\right)\)
=>\(a^2+b^2\equiv13\equiv0\left(mod13\right)\)
Vậy a2+b2 chia hết cho 13
b) \(E=\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-zx}=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2+y^2+z^2-xy-yz-zx}\)=x+y+z=2018
a) Vì a chia 13 dư 2 \(\Rightarrow\) a2 chia 13 dư 4
b chia 13 dư 3 \(\Rightarrow\) b2 chia 13 dư 9
\(\Rightarrow\) a2 + b2 chia hết cho 13
b) 10a2 + 5b2 + 12ab + 4a - 6b + 13
= ( 9a2 + 12ab + 4b2 ) + ( a2 + 4a +4 ) + ( b2 -6b + 9)
= (3a + 2b)2 + (a + 2)2 + (b - 3)2
Do (3a + 2b)2 \(\overset{>}{-}\) 0
(a+ 2)2 \(\overset{>}{-}\) 0
(b- 3)2 \(\overset{>}{-}\) 0
\(\Rightarrow\) (3a + 2b)2 + (a+ 2)2 + (b- 3)2 \(\overset{>}{-}\) 0
a) A = 18x + 17y = 19x + 19y - (x + 2y) = 19(x + y) - (x + 2y) = 19(x + y) - B
Vậy A chia hết cho 19 khi và chỉ khi B chia hết cho 19.
b) Tương tự, M = 3a - b = 5a - 5b - 2a + 4b = 5(a - b) - 2(a - 2b)
2 không chia hết cho 5 nên M chia hết cho 5 khi và chỉ khi a - 2b chia hết cho 5.
c) Tương tự: P = 3x2 - 10y = 13x2 - 10x2 - 10y = 13x2 - 10(x2 + y)
10 không chia hết cho 13 nên P chia hết cho 13 khi và chỉ khi x2 + y chia hết cho 13.