Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{2}{3}+\dfrac{3}{5}=\dfrac{10}{15}+\dfrac{9}{15}=\dfrac{19}{15}\)
a) \(\dfrac{7}{12}-\dfrac{2}{7}+\dfrac{1}{12}=\dfrac{2}{3}-\dfrac{2}{7}=\dfrac{14}{21}-\dfrac{6}{21}=\dfrac{8}{21}\)
\(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+\frac{3}{5.6}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\)
Gọi \(\left(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+......+\frac{3}{9.10}\right)\)là \(A\); \(\left(\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\right)\)là B . Ta có :
\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{10}\right)\)
\(A=\frac{3}{1}\cdot\frac{9}{10}=\frac{27}{10}\)
\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{6}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+....+\frac{1}{93}-\frac{1}{100}\right)\)
\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(B=\frac{77}{7}\cdot\frac{49}{100}=\frac{539}{100}\)
\(\Rightarrow\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}=\frac{27}{10}+\frac{539}{100}=\frac{809}{100}\)
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\cdot\frac{4}{15}=\frac{16}{45}\)
Ta có công thức tổng quát:
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)
Theo đề bài ta có:
\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
Khi Huy cho Việt Anh 4 viên bi thì tổng số bi của hai bạn vẫn luôn luôn không đổi
Số bi của Việt Anh lúc đầu bằng:
3 : (3 + 4) = \(\dfrac{3}{7}\) (tổng số bi của hai bạn)
Số bi của Việt Anh lúc sau bằng:
7 : (7 + 8) = \(\dfrac{7}{15}\) ( tống số bi của hai bạn)
4 viên bi ứng với phân số là:
\(\dfrac{7}{15}\) - \(\dfrac{3}{7}\) = \(\dfrac{4}{105}\) (tổng số bi của hai bạn)
Tổng số bi của hai bạn là:
4 : \(\dfrac{4}{105}\) = 105 (viên bi)
Lúc đầu Việt Anh có số bi là:
105 \(\times\) \(\dfrac{3}{7}\) = 45 ( viên bi)
Lúc đầu Huy có số bi là:
105 - 45 = 60 (viên bi)
Đáp số: 60 viên bi
Thử lại đáp số ta có:
Tỉ số số bi của Việt Anh lúc đầu và số bi của Huy lúc đầu là:
45 : 60 = \(\dfrac{3}{4}\) (ok)
Số bi của Việt Anh lúc sau là: 45 + 4 = 49
Số bi của Huy lúc sau là: 60 - 4 = 56
Tỉ số số bi của Việt Anh lúc sau và số bi của Huy lúc sau là:
49 + 56 = \(\dfrac{7}{8}\) (ok)
Vậy kết quả bài toán là đúng
A = \(\dfrac{7}{3\times6}\) + \(\dfrac{7}{6\times9}\) + \(\dfrac{7}{9\times12}\) + \(\dfrac{7}{12\times15}\)+ .....+\(\dfrac{7}{96\times99}\)
A = \(\dfrac{7}{3}\) x ( \(\dfrac{3}{3\times6}\) + \(\dfrac{3}{6\times9}\)+ \(\dfrac{3}{9\times12}\)+ \(\dfrac{3}{12\times15}\)+......+\(\dfrac{3}{96\times99}\))
A = \(\dfrac{7}{3}\) x ( \(\dfrac{1}{3}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{12}\)+ \(\dfrac{1}{12}\) - \(\dfrac{1}{15}\)+....+ \(\dfrac{1}{96}\) - \(\dfrac{1}{99}\))
A = \(\dfrac{7}{3}\) x ( \(\dfrac{1}{3}\)- \(\dfrac{1}{99}\))
A = \(\dfrac{224}{297}\)