Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là xy
Theo bài số lúc sau là xyyx
Biến đổi : xyyx = 1000x + 100y + 10y + x
= 1001x + 110 y
Vì 1001 chia hết cho 11 => 1001x chia hết cho 11
110 chia hết cho 11 => 110y chia hết cho 11
Nên 1001x + 110 y chia hết cho 11
\(\Rightarrow\overline{xyyx}⋮11\)( đpcm )
1.
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11
suy ra: (b+d+g) - (a+c+e) chia hết cho 11
suy ra : /abcdeg chia hết cho 11
2.
abcdeg = abc.1000+deg = abc.994 +abc.6 +deg
= abc.994 + abc.6 - 6deg +7deg =abc.994 + 6.(abc - deg) +7deg
Vì abc.994=abc.7.142 chia hết cho 7
abc - deg chia hết cho 7 =>6.(abc - deg ) chia hết cho 7
7.deg chia hết cho 7
Từ 3 ý trên =>abc.994 +6.(abc - deg) + 7deg chia cho 7
vậy abcdeg chia hết cho 7
a, Theo bài ra, ta có:
ab = 2cd (1)
abcd = ab.100 + cd.1 (2)
Thay (1) vào (2), ta có
abcd = cd.2.100 + cd.1
= cd.200 + cd.1
= cd.(200 + 1)
= cd.201
Vì 201 chia hết cho 67 nên cd.201 chia hết cho 67 hay abcd chia hết cho 67 (đpcm)
b, Vì ab + cd + eg chia hết cho 11 nên ab, cd, eg chia hết cho 11. (1)
Theo bài ra, ta có:
abcdeg = ab.10000 + cd.100 + eg.1
Từ (1), ta có ab.10000 + cd.100 + eg.1 chia hết cho 11 hay abcdeg chia hết cho 11(đpcm)
c,Tương tự như phần b bạn nhé
Nếu đúng thì bạn tick cho mình nha
Câu hỏi của Linhtsuki - Toán lớp 6 - Học toán với OnlineMath
Em xem bài làm tại link này nhé!
Ta có:10^28+8=100...008 (27 chữ số 0)
Xét 008 chia hết cho 8 =>10^28+8 chia hết cho 8 (1)
Xét 1+27.0+8=9 chia hết cho 9=>10^28+8 chia hết cho 9 (2)
Mà (8,9)=1 (3).Từ (1),(2),(3) =>10^28+8 chia hết cho (8.9=)72
Nếu chưa học thì giải zầy:
10^28+8=2^28.5^28+8
=2^3.2^25.5^28+8
=8.2^25.5^28+8 chia hết cho 8
Mặt khác:10^28+8 chia hết cho 9(chứng minh như cách 1) và(8,9)=1
=>10^28+8 chia hết cho 8.9=72
abcdeg = ab . 10000 + cd .100 + eg
= (ab . 9999 + cd . 99) +( ab + cd + eg)
= 11. (ab . 909 + cd . 9) +( ab + cd + eg)
Ta thấy 11. (ab . 909 + cd . 9) chia hết cho 11
mà theo bài ra ab + cd + eg
Chia hết cho 11
Vậy nên: 11. (ab . 909 + cd . 9) +( ab + cd + eg) hay abcdeg
Vì 11\(⋮\)11
Vậy...
Vậy
ta co : abc + deg chia hết cho 37
<=> abc . 1000 + deg chia hết cho 37
abc000 + deg chia hết cho 37
<=> abcdeg chia hết cho 37
tớ chỉ biết làm câu a thôi , bạn nguyễn thị liệu làm đúng rùi đó
ta co : abc + deg chia hết cho 37
<=> abc . 1000 + deg chia hết cho 37
abc000 + deg chia hết cho 37
<=> abcdeg chia hết cho 37
tớ chỉ biết làm câu a thôi , bạn nguyễn thị liệu làm đúng rùi đó