Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2-2a+b^2+4b+4c^2-4c+6=0\\ \Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\\ \Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+1=0\\b+2=0\\2c-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-2\\c=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(\left\{a;b;c\right\}=\left\{-1;-2;\dfrac{1}{2}\right\}\)
a nhân 2 vào 2 vế ta có
2a2+2b2+2c2=2ab +2bc+2ca
=> 2a2+2b2+2c2-2ab-2bc-2ca=0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0
=>(a-b)2+(b-c)2+(c-a)2=0
=>(a-b)=(b-c)=(c-a)=0
=>a-b=0 =>a=b (1)
b-c=0=>b=c (2)
từ (1) và (2)
=>a=b=c (đpcm)
\(4.\)
\(a.A=5-8x-x^2\)
\(=-\left(16+8x+x^2\right)+21\)
\(=-\left(4+x\right)^2+21\le21\)
\(A_{max}=21\)
Dấu '='xảy ra khi \(x=-4\)
\(b.B=5-x^2+2x-4y^2-4y\)
\(=-\left(1-2x+x^2\right)-\left(4+4y+4y^2\right)+10\)
\(=-\left(1-x\right)^2-\left(2+2y\right)^2+10\le10\)
\(B_{max}=10\)
Dấu '=' xảy ra khi \(x=1;y=-1\)
\(5.\)
\(a.\) Ta có:\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a-b=0\Leftrightarrow a=b\left(1\right)\)
hay\(b-c=0\Leftrightarrow b=c\left(2\right)\)
hay\(c-a=0\Leftrightarrow c=a\left(3\right)\)
Từ \(\left(1\right),\left(2\right)\)và\(\left(3\right)\)suy ra:\(a=b=c\left(đpcm\right)\)
\(b.a^2-2a+b^2+4b+4c^2-4c+6=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)
\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)
hay\(b+2=0\Leftrightarrow b=-2\)
hay\(2c-2=0\Leftrightarrow c=1\)
V...
^^
a) \(A=5-8x-x^2\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+2.x.4+4^2-16-5\right)\)
\(=-\left[\left(x+4\right)^2-21\right]\)
\(=-\left(x+4\right)^2+21\le21\)
Dấu "=" khi x + 4 = 0 => x = -4
Vậy GTLN của A là 21 khi x = -4
b) \(B=5-x^2+2x-4y^2-4y\)
\(=-\left(x^2-2x+4y^2+4y-5\right)\)
\(=-\left[x^2-2x+1+\left(2y\right)^2+2.2y.1+1-7\right]\)
\(=-\left[\left(x-1\right)^2+\left(2y+1\right)^2\right]+7\le7\)
Dấu "=" khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy GTLN của B là 7 khi x = 1 và y = -1/2
c) Theo đề: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)(ĐPCM)
d) \(a^2-2a+b^2+4b+4c^2-4c+6=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(\text{4c^2}-4c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}}\)
Vậy nghiệm phương trình: a = 1; b = -2; c = 1/2
Chúc bạn học tốt ^_^
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
= (a+1)2 +(b+2)2 +(2c-1)2 =0
=> a = -1
b = -2
c = 1/2
đk cần và đủ giỏi toán IQ>100 + chăm
a^2-2a+b^2+4b+4c^2-4c+6=0
<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0
<=>(a-1)^2+(b+2)^2+(2c-1)^2=0
vi (a-1)^2>=0,(b+2)^2>=0,(2c-1)^2>=0
=>(a-1)^2+(b+2)^2+(2c-1)^2>=0
dau = xay ra <=>(a-1)^2=0,(b+2)^2=0,(2c-1)^2=0
<=>a-1=b+2=2c-1=0
<=>a=2,b=-2,c=1/2
vay a=2,b=-2,c=1/2
CHÚC BẠN HỌC GIỎI
a^2-2a+b^2+4b+4c^2-4c+6=0
<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0
<=>(a-1)^2+(b+2)^2+(2c-1)^2=0
vi (a-1)^2>=0,(b+2)^2>=0,(2c-1)^2>=0
=>(a-1)^2+(b+2)^2+(2c-1)^2>=0
dau = xay ra <=>(a-1)^2=0,(b+2)^2=0,(2c-1)^2=0
<=>a-1=b+2=2c-1=0
<=>a=2,b=-2,c=1/2
vay a=2,b=-2,c=1/2
CHÚC BẠN HỌC GIỎI
a)Ta có: a^2 + b^2 + c^2 = ab + bc + ca
<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca
<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1)
Vì (a-b)^2 ; (b-c)^2 ; (c -a)^2 ≧ 0 với mọi a,b,c.
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2)
Từ (1) và (2) khẳng định dấu "=" khi:
a - b = 0; b - c = 0 ; c - a = 0 => a=b=c
Vậy a=b=c.
A = (5a – 3b + 8c)(5a – 3b –8c)
= (5a –3b)² – (8c)²
= (25a² – 30ab +9b²) – 64c²
Mà theo đề thì 4c² = a² –b²
Nên ta suy ra:
A = (25a² – 30ab +9b²) – 16(a² –b²)
= 9a² –30ab +25b²
= (3a –5b)²
\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\)
\(A=4x^2+4x+11\)
\(=\left(4x^2+4x+1\right)+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Min A = 10 khi: 2x + 1 = 0
<=> x = -1/2
\(a^2+b^2+4c^2=2a-4b+4c-6\)
\(\Leftrightarrow a^2+2a+1+b^2+4b+4+4c^2-4c+1=0\)
\(\Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+4\left(c^2-2.c.\dfrac{1}{2}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+4\left(c-\dfrac{1}{2}\right)^2=0\)
Mà \(\left\{{}\begin{matrix}\left(a+1\right)^2\ge0\\\left(b+2\right)^2\ge0\\4\left(c-\dfrac{1}{2}\right)^2\ge0\end{matrix}\right.\Rightarrow\left(a+1\right)^2+\left(b+2\right)^2+4\left(c-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+1\right)^2=0\\\left(b+2\right)^2=0\\4\left(c-\dfrac{1}{2}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-2\\c=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(a=-1,b=-2,c=\dfrac{1}{2}\)
a2 + b2 + c2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0
<=> (a - b)^2 + (b - c)^2 + (c - a)^2 = 0
<=> a - b = 0 và b - c = 0 và c - a = 0
<=> a = b và b = c
<=> a = b = c
b, a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0
<=> (a^2 - 2a + 1) + (b^2 + 4b + 4) + (4c^2 - 4c + 1) = 0
<=> (a - 1)^2 + (b + 2)^2 + (2c - 1)^2 = 0
<=> a - 1 = 0 và b + 2 = 0 và 2c - 1 = 0
<=> a = 1 và b = - 2 và c = 1/2