K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

4x^2yz^3

31 tháng 8 2021

- 7 x bình y z mũ 3 ??????!!!!!!!!!!!!

23 tháng 8 2017

Ta có:\(\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\left(1\right)\)

          \(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\left(2\right)\)

                  Từ (1) và (2) suy ra:\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau ta đc:

       \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-5\\\frac{y}{7}=-5\\\frac{z}{3}=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-45\\y=-35\\z=-15\end{cases}}}\)

23 tháng 8 2017

Ta có:

\(\frac{x}{y}=\frac{9}{7}\)=> \(\frac{x}{9}=\frac{y}{7}\)(1)

\(\frac{y}{z}=\frac{7}{3}\)=>\(\frac{y}{7}=\frac{z}{3}\)(2)

Từ (1) (2)

=>\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)

=>\(\frac{x}{9}=-3\)=>x=-27

    \(\frac{y}{7}=-3\)=>y=-21

     \(\frac{z}{3}=-3\)=>z=-9

Vậy x=-27 ; y=-21 ; z=-9

a) Từ \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)

Từ \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\) (2)

Từ (1) và (2) =>\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3\cdot9\\y=-3\cdot7\\z=-3\cdot3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)

b) Từ \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)

Từ \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)

Từ (1) và (2) =>\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot7\\y=2\cdot20\\z=2\cdot32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\)

c) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)

=> \(x=12k\) ; \(y=9k\) ;\(z=5k\)

=> xyz = \(12k\cdot9k\cdot5k\) =\(540\cdot k^3\) = 20

=>\(k^3=20:540=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\)

=>\(k=\dfrac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\cdot12\\y=\dfrac{1}{3}\cdot9\\z=\dfrac{1}{3}\cdot5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)

d) Từ \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{25+49+9}=\dfrac{585}{83}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{585}{83}\cdot25\\y^2=\dfrac{585}{83}\cdot49\\z^2=\dfrac{585}{83}\cdot9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=\\y^2=\\z^2=\end{matrix}\right.\) đề bài sai nên ko tìm được x ; y ; z

11 tháng 11 2018

a)Đặt k, ta có:

x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z

thay x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z vào x2+y2+z2=152, tao có:

(2k)2+(3k)2+(5k)2=152

=>4xk2+9xk2+25xk2=152

=>k2x38=152

=>k2=4=>k=2 hoặc k=-2

Với k=2

=>x=4;y=6;z=10

Với k=-2

=>x=-4;y=-6;z=-10

Vậy (x=4;y=6;z=10) hoặc (x=-4;y=-6;z=-10)

b)Áp dụng dãy tỉ số bằng nhau, ta có :

x/4=y/7=z/9=(2x)/8=(2x-y)/8-7=2

=>x=8;y=14;z=18

Vậy........

9 tháng 6 2019

Theo đầu bài ra ta có :

x/3=y/4=z/2=x^3/27= x^3/64= z^3/8 và x^3-y^3+z^3 =-29

áp dụng tc dãy tỉ số = nhau nên ta có :

x^3/27=z^3/64= z^3/8=x^3-y^3+z^3/ 27-64+8=-29/-29=1

x/3=1 => x=3

y/4=1=>x=4

x/2=1=>x=2

vậy x=3 ; y=4 ;z=2

CHUK BẠN LÀM BÀI TỐT NHA

9 tháng 6 2019

Còn cách nào ko bạn

14 tháng 7 2021

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=>\left\{{}\begin{matrix}x=\dfrac{5y}{7}\\z=\dfrac{3y}{7}\end{matrix}\right.\) thay x,z vào \(x^2+y^2-z^2=585\)

\(=>\left(\dfrac{5y}{7}\right)^2+y^2-\left(\dfrac{3y}{7}\right)^2=585=>y=\pm21\)

\(=>\left\{{}\begin{matrix}x=\dfrac{5.(\pm21)}{7}=\pm15\\z=\dfrac{3\left(\pm21\right)}{7}=\pm9\end{matrix}\right.\)

vậy (x,y,z)\(\in\left\{\left(15;21;9\right)\left(-15;-21;-9\right)\right\}\)

26 tháng 11 2017

what are doing?

26 tháng 11 2017

I am doing homework

5 tháng 9 2021

Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)

Theo tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+3y^2-z^2}{4+27-25}=\frac{22}{6}=\frac{11}{3}\)

\(\Rightarrow x^2=\frac{44}{3}\Rightarrow x=\frac{2\sqrt{11}}{\sqrt{3}}=\frac{2\sqrt{33}}{3}\)

\(\Rightarrow y^2=\frac{99}{3}=33\Rightarrow y=\sqrt{33}\)

\(\Rightarrow z^2=\frac{275}{3}\Rightarrow z=\frac{5\sqrt{33}}{3}\)