Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a : \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
Câu b : \(9m^2+n^2-6mn=\left(3m-n\right)^2\)
Câu c : \(16a^2+25b^2+40ab=\left(4a+5b\right)^2\)
Câu d : \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
\(a,4x^2+4xy+y^2=\left(2x\right)^2+4xy+y^2=\left(2x+y\right)^2\)
\(b,9m^2+n^2-6mn=\left(3m\right)^2-6mn+n^2=\left(3m-n\right)^2\)
\(c,16a^2+25b^2+40ab=\left(4a\right)^2+40ab+\left(5b\right)^2=\left(4a+5b\right)^2\)
@Yukru ơi! giúp câu D với!
Chúc bạn học tốt!
a) 4x2+4xy+y2
=(2x)2+2(2x)(y)+y2
=(2x+y)2
b)9m2+n2-6mn
=(3m)2-2(3m)n+n2
=(3m-n)2
c)16a2+25b2+40ab
=(4a)2+(5b)2+2(4a)(5b)
=(4a+5b)2
d)x2-x+\(\frac{1}{4}\)
=x2-2x.\(\frac{1}{2}\)+\(\left(\frac{1}{2}\right)^2\)
=\(\left(x-\frac{1}{2}\right)^2\)
Bài1:
\(\left(3+xy^2\right)^2=81+6xy^2+x^2y^4\)
Các câu sau tương tự
Bài2:
\(a,\left(4x^2+4xy+y^2\right)\)
=\(\left(2x+y\right)^2\)
b)\(9m^2+n^2-6mn=\left(3m-n\right)^2\)
c)\(16a^2+25b^2+40ab=\left(4a+5b\right)^2\)
d)\(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
Bài3:
\(a,301^2=\left(300+1\right)^2=900+600+1=1501\)
b/\(499^2=\left(500-1\right)^2=2500-1000+1=1501\)
c/\(68.72=\left(70-2\right)\left(70+2\right)=70^2-2^2=4900-4=4896\)
a, \(4x^2+4xy+y^2=\left(4x\right)^2+2.2x.y+y^2\)
\(=\left(4x+y\right)^2\)
b, \(9m^2+n^2-6mn=\left(3m\right)^2-2.3m.n+n^2\)
\(=\left(3m-n\right)^2\)
c, \(16a^2+25b^2+40ab=\left(4a\right)^2+2.4a.5b+\left(5b\right)^2\)
\(=\left(4a+5b\right)^2\)
d, \(x^2-x+\dfrac{1}{4}=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\)
\(=\left(x-\dfrac{1}{2}\right)^2\)
Chúc bạn học tốt!!!
a) \(x^2-6x+9=x^2-2.3.x+3^2=\left(x-3\right)^2\)
b)\(x^2+4x+4=x^2+2.2.x+2^2=\left(x+2\right)^2\)
c)\(4x^2+4x+1=\left(2x\right)^2+2.2x.1+1^2=\left(2x+1\right)^2\)
d)\(4x^2+12xy+9y^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2=\left(2x+3y\right)^2\)
e)\(x^2-8x+16=x^2-2.4.x+4^2=\left(x-4\right)^2\)
a) x2 -6x +9 = (x-3)2
b) x2+4x +4= (x+2)2
c) 4x2+4x+1= (2x+1)2
d) 4x2+12xy+9y2 = (2x+3y)2
e) x2-8x+16 = (x-4)2
Đây chính là hằng đẳng thức nhé bn....
Bài 1 : \(a,\)\(16u^2v^4-8uv^2+1\)
\(=\left(4uv^2\right)^2-2.4uv^2.1+1^2\)
\(=\left(4uv^2-1\right)^2\)
\(b,\)\(4x^2-12x+4\)
\(\left(2x\right)^2-2.2x.3+3^2-5\)
\(=\left(2x-3\right)^2-\left(\sqrt{5}\right)^2\)
\(=\left(2x-3-\sqrt{5}\right)\left(2x-3+\sqrt{5}\right)\)
Bài 2 :
\(\left(x+1-2y\right)^2\)
\(=\left[\left(x-1\right)-2y\right]^2\)
\(=\left(x-1\right)^2-2\left(x-1\right).2y+\left(2y\right)^2\)
\(=x^2-2x+1-4xy+4y+4y^2\)
Bài 3 : ( Đề nhầm tí nha , coi lại nhé )
\(x^2+y^2=\left(x+y\right)^2-2xy\)
\(\Rightarrow x^2+y^2=x^2+2xy+y^2\)
\(\Rightarrow x^2+y^2=x^2+y^2\) ( luôn đúng với \(\forall x\))
\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)\(\left(đpcm\right)\)
a/ 9x2-12xy+4y2 = (3x - 2y)2
b/ 25x2-10x+1 = (5x - 1)2
c/ 9x2-12x+4 = (3x - 2)2
d/ 4x2+20x+25 = (2x + 5)2
e/ x4-4x2+4 = (x2 - 2)2
1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2
b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2
c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2
2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16
= x2 + 2xy + y2 + 42 = (x + y)2 + 42
b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36
= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2
c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9
= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2
d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2
= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2
a, Đề sai bạn ơi phải là cộng 16 chứ không phải cộng 4
b,B= (x-2y+1)^2
a) \(4x^2+4xy+y^2=\left(2x\right)^2+2.2x.y+y^2=\left(2x+y\right)^2\)
b) \(9m^2+n^2-6mn=\left(3m\right)^2-2.3m.n+n^2=\left(3m-n\right)^2\)
c) \(16a^2+25b^2+40ab=\left(4a\right)^2+2.4a.5b+\left(5b\right)^2=\left(4a+5b\right)^2\)
d) \(x^2-x+\dfrac{1}{4}=\left(x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2\right)=\left(x-\dfrac{1}{2}\right)^2\)
a,(2x+y)2
b,(3m-n)2
c,(4a+5b)2
d,(x-\(\dfrac{1}{2}\))2