Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải
5x-(4-2x+x^2)(x+2)+x(x-1)(x+1)=0
5x-(4x+8-2x^2-4x+x^3+2x^2)+x(x^2-1)=0
5x-4x-8+2x^2+4x-x^3-2x^2+x^3-1x=0
(5x-4x+4x-1x)+(-8)+(2x^2-2x^2)+(-x^3+x^3)=0
4x+(-8)=0
4x=0+8
4x=8
x=8:4
x=2
D)(4x+1)(16x^2-4x+1)-16x(4x^2-5)=17
64x^3-16x^2+4x+16x^2-4x+1-64x^3+80x=17
80x+1=17
80x=17-1
80x=16
x=1/5
a) \(7x^2-16x=2x^3-56\)
\(\Leftrightarrow\)\(2x^3-7x^2+16x-56=0\)
\(\Leftrightarrow\)\(2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(\left(2x-7\right)\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(2x-7=0\)
\(\Leftrightarrow\)\(x=3,5\)
Vậy...
b) \(x^7+x^3+2x^5+2x=0\)
\(\Leftrightarrow\)\(x.\left(x^6+x^2+2x^4+2\right)=0\)
\(\Leftrightarrow\)\(x\left(x^2+2\right)\left(x^4+1\right)=0\)
\(\Leftrightarrow\)\(x=0\)
Vậy...
c) \(\left(2x+1\right)x-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(2x\left(x+\frac{1}{2}\right)-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\left(2x-5\right)\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-5=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2,5\\x=-0,5\end{cases}}\)
Vậy...
a: \(\Leftrightarrow2x^3-56-7x^2+16x=0\)
\(\Leftrightarrow2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)
=>2x-7=0
hay x=7/2
b: \(\Leftrightarrow x^5\left(x^2+2\right)+x\left(x^2+2\right)=0\)
=>x(x2+2)(x4+1)=0
=>x=0
c: \(\Leftrightarrow2x^2+x-5x-\dfrac{5}{2}=0\)
\(\Leftrightarrow2x^2-4x-\dfrac{5}{2}=0\)
hay \(x\in\left\{\dfrac{5}{2};-\dfrac{1}{2}\right\}\)
*\(\left(2x-3\right)^2=\left(x+5\right)^2\)
\(\Rightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Rightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
* \(x^3-16x=0\)
\(\Rightarrow x\left(x^2-16\right)=0\)
\(\Rightarrow x\left(x^2-4^2\right)=0\)
\(\Rightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
x3-16x=0
=> x(x2-16)=0
=> x(x-4)(x+4)=0
=> \(\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
vậy x=0 ;x=4;x=-4
3x(2-x)-2+x=0
=> 3x(2-x)-(2-x)=0
=> (2-x)(3x-1)=0
=> \(\left[{}\begin{matrix}2-x=0\\3x-1=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=2\\3x=1\Rightarrow x=\dfrac{1}{3}\end{matrix}\right.\)
vậy x=2 hoặc x=\(\dfrac{1}{3}\)
c) (x+3)(x2-2x+3)=(x+3)(5-2x)
=>(x+3)(x2-2x+3) - (x+3)(5-2x)=0
=>(x+3)(x2-4x-2)=0
=>\(=>\left[{}\begin{matrix}x+3=0\\\text{x^2-4x-2}=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\\left(x-2\right)^2-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\\left(x-2\right)^2=6\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=\sqrt{6}+2\\x=-\sqrt{6}+2\end{matrix}\right.\)
-2x2-16x+40=0
-2(x2+8x-20)=0
-2(x2+2x.4+42-36)=0
-2[(x+4)2-62]=0
-2(x+4+6)(x+4-6)=0
-2(x+10)(x-2)=0
=>\(\orbr{\begin{cases}x+10=0\\x-2=0\end{cases}}\)=>\(\orbr{\begin{cases}x=-10\\x=2\end{cases}}\)
Chúc bn học tốt!!!!!