Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ( x-1)3= -27
=> x - 1 = -3
=> x = -2
b, ( 2x - 1)2=25
=> 2x - 1 = 5 hoặc 2x - 1 = -5
=> 2x = 6 hoặc 2x = -4
=> x = 3 hoặc x = -2
c, ( x - 3/4)2= ( 1/2)6
=> (x - 3/4)^2 = 1/64
=> x - 3/4 = 1/8 hoặc x - 3/4 = -1/8
=> x = 7/8 hoặc x = 5/8
d, 2 x + 2 x +2 = 80
=> 2^x + 2^x.4 = 80
=> 2^x(1 + 4) = 80
=> 2^x.5 = 80
=> 2^x = 16
=> x = 4
e, 4x + 4 x + 3 = 4160
=> 4^x(1 + 64) = 4160
=> 4^x.65 = 4160
=> 4^x = 64
=> x = 3
Bài 2:
1. \(8^n:2^n=4\)
⇔ \(2^{3n}:2^n=2^2\)
⇔ \(2^{2n}=2^2\)
⇔ \(2n=2\)
⇔ \(n=2:2\)
⇒ \(n=1\)
Vậy \(n=1.\)
Chúc bạn học tốt!
\(a,35:\left(\frac{-5}{3}\right)+2\frac{1}{2}:\left(-\frac{5}{3}\right)=35.\left(-\frac{3}{5}\right)+\frac{5}{2}.\left(-\frac{3}{5}\right)\)
\(=-21+-\frac{3}{2}\)
\(=\frac{-42-3}{2}=-\frac{45}{2}\)
\(b,\frac{10^3+2.5^3+5^3}{55}=\frac{\left(2.5\right)^3+2.5^3+5^3}{5.11}\)
\(=\frac{5^3\left(2^3+2+1\right)}{5.11}\)
\(=\frac{5^2\left(8+2+1\right)}{11}\)
\(=\frac{5^2.11}{11}=5^2=25\)
\(C,\frac{27^2.2^5}{6^6.32^3}=\frac{\left(3^3\right)^2.2^5}{\left(2.3\right)^6.2^5}\)
\(=\frac{3^6}{2^6.3^6}=\frac{1}{2^6}=\frac{1}{64}\)
B1:
a)x=-3/5*9/25 =>x=-27/125
b)x=(4/7)6:(4/7)4 =>x=(4/7)2=16/49
c)(x/4)2=4:(x/2)
(x/4)2=8/x
x2/16=8/x2
x3=128
x=5,039
B2
M=23.10+22.10/23.4+22.11
=230+220/212+222
=230+28+222
=28(222+1+214)
=2
\(=20^2-19^2+18^2-17^2+...+2^2-1^2\)
\(=\left(20+19\right)\left(20-19\right)+\left(18+17\right)\left(18-17\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=39+35+..+3\)
\(=210\)
a) Ta có : 2017 - |x - 2017| = x
=> |x - 2017| = 2017 - x (1)
Điều kiện xác định : \(2017-x\ge0\Rightarrow2017\ge x\Rightarrow x\le2017\)
Khi đó (1) <=> \(\orbr{\begin{cases}x-2017=2017-x\\x-2017=-\left(2017-x\right)\end{cases}\Rightarrow\orbr{\begin{cases}2x=2017+2017\\x-2017=-2017+x\end{cases}\Rightarrow}\orbr{\begin{cases}2x=4034\\0x=0\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=2017\\x\text{ thỏa mãn }\Leftrightarrow x\le2017\end{cases}}\Rightarrow x\le2017\)
b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2016}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2016}\ge\\\left|x+y+z\right|\ge0\forall x;y;z\end{cases}0\forall y}\Rightarrow\left(2x-1\right)^{2016}+\left(y-\frac{2}{5}\right)^{2016}+\left|x+y+z\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=-\frac{9}{10}\end{cases}}}\)
a) \(\left(-2\right)^3+2^2+\left(-1\right)^{20}+\left(-2\right)^0\)
\(=-8+4+1+1=-2\)
b) \(\left(3^2\right)^2-\left(-5^2\right)^2+\left[\left(-2\right)^3\right]^2\)
\(=9^2-\left(-25\right)^2+\left(-8\right)^2\)
\(=81-625+64=-480\)
c) Bạn sửa lại đề!