K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt 
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0

8 tháng 8 2017

Gọi số sách chồng t1, t2 lần lượt là a; b (a, b >0)

Ta có hệ pt sau :

\(\hept{\begin{cases}a+b=90\\a+10=2\left(b-10\right)\end{cases}}\)

a + 10 = 2(b-10) 

\(\Rightarrow a=2b-30\)

a + b = 90

\(\Leftrightarrow2b-30+b=90\Leftrightarrow3b=120\Leftrightarrow b=40\Leftrightarrow a=50\)

Vậy lúc đầu chồng t` có 50 quyển, chồng t2 có 40 quyển

19 tháng 9 2016

áp dụngBĐT cô si ta có

\(\frac{x^2}{y+1}\)+\(\frac{y+1}{4}\)\(\ge\)x

\(\frac{y^2}{z+1}\)+\(\frac{z+1}{4}\)\(\ge\)y

\(\frac{z^2}{x+1}\)+\(\frac{x+1}{4}\)\(\ge\)z

khi đó VT\(\ge\)x+y+z-\(\frac{x+y+z+3}{4}\)=\(\frac{3\left(x+y+z\right)-3}{4}\)

áp dụng BĐT cô si

x+y+z\(\ge\)\(3\sqrt[3]{xyz}\)=3

do đó VT\(\ge\)\(\frac{6}{4}\)=\(\frac{3}{2}\)  (đpcm)

8 tháng 7 2018

\(\left(7+\sqrt{x}\right)\left(8-\sqrt{x}\right)=x+11\)

\(\Leftrightarrow\left(7+\sqrt{x}\right)8-\left(7+\sqrt{x}\right)\sqrt{x}=x+11\)

\(\Leftrightarrow56+8\sqrt{x}-7\sqrt{x}-\sqrt{x^2}=x+11\)

\(\Leftrightarrow56-\sqrt{x}-x=x+11\)

\(\Leftrightarrow56-\sqrt{x}-x-\left(56-x\right)=x+11-\left(56-x\right)\)

\(\Leftrightarrow\sqrt{x}=2x-45\)

\(\Leftrightarrow\left(\sqrt{x}\right)^2=\left(2x-45\right)^2\)

\(\Leftrightarrow x=4x^2-180x+2025\)

\(\Leftrightarrow4x^2-180x+2025-x=0\)

\(\Leftrightarrow4x^2-181x+2025=0\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{-\left(-181\right)+\sqrt{\left(-181\right)^2-4\cdot4\cdot2025}}{2\cdot4}\\x_2=\frac{-\left(-181\right)-\sqrt{\left(-181\right)^2-4\cdot4\cdot2025}}{2\cdot4}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=25\\x_2=\frac{81}{4}\end{cases}}\)

Thử lại, ta thấy x2 không phải là nghiệm của p/t

Vậy x = 25.