K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2022

\(P=\left(\dfrac{1}{x-1}-\dfrac{2x}{x^3-x^2+x-1}\right):\left(\dfrac{1-2x}{x+1}\right)\left(ĐKXĐ:x\ne0;x\ne\pm1\right)\)

\(=\left(\dfrac{1}{x-1}-\dfrac{2x}{x^2\left(x-1\right)+\left(x-1\right)}\right):\left(\dfrac{1-2x}{x+1}\right)\)

\(=\left(\dfrac{1}{x-1}-\dfrac{2x}{\left(x-1\right)\left(x^2+1\right)}\right):\left(\dfrac{1-2x}{x+1}\right)\)

\(=\left(\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\right):\left(\dfrac{1-2x}{x+1}\right)\)

\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}:\dfrac{1-2x}{x+1}\)

\(=\dfrac{x-1}{x^2+1}:\dfrac{1-2x}{x+1}\)

\(=\dfrac{x-1}{x^2+1}.\dfrac{x+1}{1-2x}\)

\(=\dfrac{x^2-1}{\left(x^2+1\right)\left(1-2x\right)}\)

26 tháng 12 2016

a)

DK:tồn tại P \(\hept{\begin{cases}x\ne0\\x\ne-+6\\x\ne3\end{cases}}\)

\(P=\left(\frac{x}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{x\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}\\ \)

\(P=\left(\frac{x^2-\left(x-6\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}\)

\(P=\left(\frac{x^2-\left(x^2-12x+36\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}\)

\(P=\left(\frac{12\left(x-3\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}=\frac{6}{x-6}\)

b)6/(x-6)=1=> x-6=6=> x=12

c)x-6<0=> x<6

23 tháng 12 2018

dieu kien xac  dinh cua bieu thuc tren la x khac -+6,x khac 3

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

\(P=\dfrac{-x^4+2x^3-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)

\(=\dfrac{\left(1-x^2\right)\left(1+x^2\right)+2x\left(x^2-1\right)}{4x^2-1}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\dfrac{\left(1-x^2\right)\left(1+x^2-2x\right)}{4x^2-1}+\dfrac{2}{2x+1}\)

\(=\dfrac{\left(1-x^2\right)\left(x^2-2x+1\right)+4x-2}{4x^2-1}\)

 

 

20 tháng 5 2022

TKS bạn

 

3 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne1\end{cases}}\)

\(A=\frac{2x+1}{x^2-3x+2}+\frac{x+1}{1-x}-\frac{x^2+5}{x^2-3x+2}+\frac{x^2+x}{x-1}\)

\(\Leftrightarrow A=\frac{2x+1}{\left(x-1\right)\left(x-2\right)}-\frac{x+1}{x-1}-\frac{x^2+5}{\left(x-2\right)\left(x-1\right)}+\frac{x^2+x}{x-1}\)

\(\Leftrightarrow A=\frac{2x+1-\left(x+1\right)\left(x-2\right)-x^2-5+\left(x^2+x\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\frac{2x+1-x^2+x+2-x^2-5+x^3-x^2-2x}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}\)

b) Khi \(x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=.0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}\)

\(\Leftrightarrow A=\frac{\left(-1\right)^3-3\left(-1\right)^2-1-2}{\left(-1-2\right)\left(-1-1\right)}=\frac{\left(-1\right)-3-1-2}{\left(-3\right)\left(-2\right)}=\frac{7}{6}\)

c) Để A = 0

\(\Leftrightarrow\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}=0\)

\(\Leftrightarrow x^3-3x^2+x-2=0\)2.89328919

Phần này mik k biết phân tích như thế nào, tính ra :

\(\Leftrightarrow x\approx2,89328919\)

Nhưng nếu đề bắt tìm nghiệm nguyên của x thì \(S=\varnothing\)nhé !

d) Để \(A\inℤ\)

\(\Leftrightarrow x^3-3x^2+x-2⋮\left(x-2\right)\left(x-1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^3-3x^2+x-2⋮x-2\\x^3-3x+x-2⋮x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x^2-x-1\right)\left(x-2\right)-4⋮x-2\\\left(x^2-2x-1\right)\left(x-1\right)-3⋮x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4⋮x-2\\3⋮x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{1;3;0;4;-2;6\right\}\\x\in\left\{0;2;-2;4\right\}\end{cases}}\)

\(\Leftrightarrow x\in\left\{0;-2;4\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{0;-2;4\right\}\)