Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) > 1 / (1*2) + 1 / (3*4) = 1 / 2 + 1 / 12 = 7 / 12 ♦
A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100) =
(1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 <
1 - 1 / 2 + 1 / 3 = 5 / 6 ♥
♦, ♥ => 7 / 12 < A < 5 / 6
b)ta có:
1/1.2+1/3.4+1/5.6+...+1/49.50
=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)
=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2
=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)
=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50
hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
\(\frac{1}{1.2}+\frac{1}{3.4}+......+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-....+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+.....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)
\(theocaua\Rightarrow A=\frac{1}{26}+\frac{1}{27}+......+\frac{1}{50}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\left(5sohang\right)+\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\left(10sohang\right)+\frac{1}{50}+\frac{1}{50}+....+\frac{1}{50}\left(10sohang\right)=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\left(1\right)\)
\(A=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}< \frac{1}{25}+\frac{1}{25}+...+\frac{1}{25}\left(5sohang\right)+\frac{1}{30}+\frac{1}{30}+....+\frac{1}{30}\left(10sohang\right)+\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}\left(10sohang\right)=\frac{1}{4}+\frac{1}{3}+\frac{1}{5}=\frac{47}{60}< \frac{5}{6}=\frac{50}{60}\left(2\right)\) \(\left(1\right);\left(2\right)\Rightarrow\frac{7}{12}< A< \frac{5}{6}\)
1/1.2+1/3.4+1/5.6+...+1/49.50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=1/1+1/2+1/3+1/4+...+1/49+1/50-2(1/2+1/4+1/6+...+1/50)
=1/1+1/2+1/3+1/4+...+1/49+1/50-(1/1+1/2+1/3+1/4+...+1/25)
=1/26+1/27+...+1/50=1/26+1/27+...+1/50(đpcm)
b. 1/1-1/2+1/3-1/4+...+1/99-1/100=99/100
7/12=175/300; 5/6=10/12=250/300; 99/100=297/300
(hình như khúc này đề bài sai hả bạn) bạn tự tính ra nhé
bài 2: a.x+1/10+x/12+x/14+...x+1/20
(x+x+x...+x)+(1/10+1/12+...+1/20)
ko có kết quả sao tìm x được bạn:[
b.x+1/2000+x+2/1999=x+3/1998+x+4/1997
x+1/2000+x+2/1999=x+3/1998+x+4/1997
(x+1/2000+1)+(x+2/1999+1)=(x+3/1998+1)+(x+4/1997+1)
x+2002/2000+x+2002/1999=x+2002/1998+x+2002/1997
x+2002(1/2000+1/1999)=(x+2002)(1/1998+1/1997)
=>(1/2000+1/1999)=(1/1998+1/1997)
x+2002(1/2000+1/1999)-(x+2002)(1/1998+1/1997)=0
(x+2002)(1/2000+1/1999-1/1998-1/1997)=0
(x+2002).0=0
(x+2002)=0
x =0-2002=-2002
Chúc bạn học tốt.
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
=>\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
=>\(A=1-\frac{1}{50}=\frac{49}{50}\)
mà A=49/50
=>1/26+1/27+...+1/50 =49/50
ta có:
1/1.2+1/3.4+1/5.6+...+1/49.50
=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)
=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2
=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)
=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50
hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
1
Ta có :A=1/1.2+1/3.4+...+1/99.100=1/2+1/12+...+1/9900
7/12=1/2+1/12
Vì 1/2+1/12<1/2+1/12+...+1/9900
Nên: 7/12<A (1)
Lại có:A=1/1.2+1/3.4+...+1/99.100
=1-1/2+1/3-1/4+...+1/99-1/100
=(1-1/2+1/3)+(-1/4+1/5-1/6)+...+(-1/98+1/99-1/100)
5/6=1-1/2+1/3
vì: 1-1/2+1/3 < (1-1/2+1/3)+(-1/4+1/5-1/6)+...+(-1/98+1/99-1/100)
nên 5/6 < A (2)
Từ (1) và (2) suy ra 7/12<A<5/6
A=1/2x(1/2+1/6+1/12+...+1/10100)
=1/2x(1/1x2+1/2x3+1/3x4+...+1/100x101)
=1/2x(1-1/2+1/2-1/3+1/3+1/4+...+1/100-1/101)
=1/2x(1-1/101)
=1/2x100/101=50/101 (đúng thì cho mk nhoa)