Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=1/4+1/12+1/36+........+1/6030
3A=1+1/4+1/12+.........+1/2010
-2A=1/6030-1
A=(1/6030-1)/-2
\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)
\(3A=3\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\right)\)
\(3A=\frac{3}{4}+\frac{3}{12}+\frac{3}{36}+\frac{3}{108}+\frac{3}{324}+\frac{3}{927}\)
\(3A=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)
\(2A=3A-A\)
\(2A=\left(\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\right)-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\right)\)
\(2A=\frac{3}{4}-\frac{1}{927}\)
\(2A=\frac{729-1}{972}=\frac{728}{972}=\frac{182}{243}\)
\(A=\frac{182}{243}:\frac{1}{2}\)
\(A=\frac{364}{243}\)
2F = 2/10 x 12 + 2 / 12 x 14 + 2 / 14 x 16 + ... + 2 / 108 x 110
= 1/10 - 1/12 + 1/12 - 1/14 + 1/14 - 1/16 + ... + 1/108 -1/110
= 1/10 - 1/110
= 1/11
chuyển đổi lại : (7x - 3) : 12 = 13
=> (7x - 3) = 13 * 12
=> 7x - 3 = 156
=> 7x = 159
=> x= 159/7
[(7x - 31) : 5] * 36 = 7236
=> [(7x - 31) : 5] = 7236 : 36 = 201
=> (7x - 31) : 5 = 201
=> 7x - 31 = 1005
=> 7x = 1036
=> x = 148
1 + 2 + 3 + 4 + 5 +... + 100 + x = 5350
SSH : \(\left(100-1\right):1+1=100\)
=> tổng : \(\frac{\left(1+100\right)\cdot100}{2}=5050\)
=> 5050 + x = 5350
=> x = 5350 - 5050 = 300
80 - 9(x - 4) = 35
=> 9(x - 4) = 80 - 35 = 45
=> x - 4 = 45 : 9
=> x - 4 = 5
=> x = 9
(3x - 21) : 4 + 108 = 114
=> (3x - 21) : 4 = 114 - 108 = 6
=> 3x - 21 = 24
=> 3x = 45
=> x = 15
[(6x - 72) : 2 - 84]*14 = 2814
=> [(6x - 72) : 2 - 84] = 201
=> (6x - 72) : 2 - 84 = 201
=> (6x - 72) : 2 = 285
=> 6x - 72 = 570
=> 6x = 642
=> x = 107
28x + 12x = 80
=> 40x = 80
=> x = 2
249 - 7(1 + x) = 200
=> 7(1 + x) = 49
=> 1 + x = 7
=> x = 6
20 - [(x - 5) * 7 + 4] = 2
=> [(x - 5) * 7 + 4] = 18
=> (x - 5)*7 + 4 = 18
=> (x - 5) * 7 = 14
=> x - 5 = 2
=> x = 7
\(\frac{7x-33}{12}=13\)
\(7x-33=13\cdot12\)
\(7x-33=156\)
\(7x=156+33\)
\(7x=189\)
\(x=\frac{189}{7}=27\)
\(\frac{7x-31}{5}\cdot36=7236\)
\(\frac{7x-31}{5}=\frac{7236}{36}\)
\(\frac{7x-31}{5}=201\)
\(7x-31=201\cdot5\)
\(7x-31=1005\)
\(7x=1005+31\)
\(7x=1036\)
\(x=\frac{1036}{7}=148\)
\(1+2+3+4+5+..+100+x=5350\)
\(\left(1+2+3+4+5+...+100\right)+x=5350\)
Phần 1 + 2 + 3 + 4 + 5 + ... + 100 có số số hạng là :
\(\frac{100-1}{1}+1=100\) ( số hạng )
\(\Rightarrow\frac{\left(100+1\right)\cdot100}{2}+x=5350\)
\(5050+x=5350\)
\(x=5350-5050=300\)
\(80-9\left(x-4\right)=35\)
\(9\left(x-4\right)=80-35\)
\(9\left(x-4\right)=45\)
\(x-4=\frac{45}{9}\)
\(x-4=5\)
\(x=5+4=9\)
\(\frac{3x-21}{4}+108=114\)
\(\frac{3x-21}{4}=114-108\)
\(\frac{3x-21}{4}=6\)
\(3x-21=6\cdot4\)
\(3x-21=24\)
\(3x=24+21\)
\(3x=45\)
\(x=\frac{45}{3}=15\)
\(14\left(\frac{6x-72}{2}-84\right)=2814\)
\(3x-36-84=\frac{2814}{14}\)
\(3x-120=201\)
\(3x=201+120\)
\(3x=321\)
\(x=\frac{321}{3}=107\)
\(28x+12x=80\)
\(x\left(28+12\right)=80\)
\(x\cdot40=80\)
\(x=\frac{80}{40}=2\)
\(249-7\left(1+x\right)=200\)
\(-7\left(1+x\right)=200-249\)
\(-7\left(1+x\right)=-49\)
\(1+x=\frac{-49}{-7}\)
\(1+x=7\)
\(x=7-1=6\)
\(20-7\left(x-5\right)+4=2\)
\(20-7\left(x-5\right)=2-4\)
\(20-7\left(x-5\right)=-2\)
\(-7\left(x-5\right)=-2-20\)
\(-7\left(x-5\right)=-22\)
\(x-5=\frac{-22}{-7}\)
\(x=\frac{22}{7}+5=\frac{57}{7}\)
\(\left(1-\dfrac{1}{35}\right)\times\left(1-\dfrac{1}{36}\right)\times..\times\left(1-\dfrac{1}{2011}\right)\)
=\(\dfrac{34}{35}\times\dfrac{35}{36}\times\dfrac{36}{37}\times...\times\dfrac{2010}{2011}\)
=\(\dfrac{34}{2011}\)
Đặt \(S=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+...+\frac{1}{2010}+\frac{1}{6030}.\)
\(\Rightarrow3S=\frac{3}{4}+\frac{3}{12}+\frac{3}{36}+...+\frac{3}{2010}+\frac{3}{6030}\)
\(=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+...+\frac{1}{670}+\frac{1}{2010}\)
\(\Rightarrow3S-S=2S=\left(\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+...+\frac{1}{670}+\frac{1}{2010}\right)-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+...+\frac{1}{2010}+\frac{1}{6030}\right)\)
\(2S=\frac{3}{4}-\frac{1}{6030}\)
\(\Rightarrow S=\frac{\frac{3}{4}-\frac{1}{6030}}{2}\)