Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
B=\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+\(\dfrac{1}{2^4}\)+.........+\(\dfrac{1}{2^{2017}}\)
2B=1+\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+.......+\(\dfrac{1}{2^{2016}}\)
2B-B=(1+\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+.......+\(\dfrac{1}{2^{2016}}\))-(\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+\(\dfrac{1}{2^4}\)+.......+\(\dfrac{1}{2^{2017}}\))
B=1-\(\dfrac{1}{2^{2017}}\)
Vậy B=1-\(\dfrac{1}{2^{2017}}\)
a: \(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2007}-\dfrac{1}{2008}=1-\dfrac{1}{2008}=\dfrac{2007}{2008}\)
b: \(Q=\dfrac{7}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2009\cdot2011}\right)\)
\(=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)
\(=\dfrac{7}{2}\cdot\dfrac{2010}{2011}\simeq3,50\)
a, \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}=\dfrac{100}{101}\)
b, \(\dfrac{5}{1.3}+\dfrac{5}{3.5}+...+\dfrac{5}{99.101}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}.\dfrac{100}{101}=\dfrac{250}{101}\)
Vậy...
B)
B = \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{29.31}\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...\dfrac{1}{29.31}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{29}-\dfrac{1}{31}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{31}\right)\)
= \(\dfrac{1}{2}.\dfrac{30}{31}\)
= \(\dfrac{30}{62}\) = \(\dfrac{15}{31}\)
a: 51/56=1-5/56
61/66=1-5/66
mà -5/56<-5/66
nên 51/56<61/66
b: 41/43<1<172/165
c: \(\dfrac{101}{506}>0>-\dfrac{707}{3534}\)
1) \(19\dfrac{5}{8}:\dfrac{7}{12}-15\dfrac{1}{4}:\dfrac{7}{12}\)
\(=\dfrac{157}{8}\cdot\dfrac{12}{7}-\dfrac{61}{4}\cdot\dfrac{12}{7}\\ =\dfrac{12}{7}\left(\dfrac{157}{8}-\dfrac{61}{4}\right)\\ =\dfrac{12}{7}\cdot\dfrac{35}{8}\\ =\dfrac{15}{2}\)
2) \(\dfrac{2}{5}\cdot\dfrac{1}{3}-\dfrac{2}{15}:\dfrac{1}{5}+\dfrac{3}{5}\cdot\dfrac{1}{3}\)
\(=\dfrac{1}{3}\left(\dfrac{2}{5}+\dfrac{3}{5}\right)-\dfrac{2}{15}\cdot5\\ =\dfrac{1}{3}\cdot1-\dfrac{2}{3}\\ =\dfrac{1}{3}-\dfrac{2}{3}\\ =-\dfrac{1}{3}\)
3) \(\dfrac{4}{9}\cdot19\dfrac{1}{3}-\dfrac{4}{9}\cdot39\dfrac{1}{3}\)
\(=\dfrac{4}{9}\left(19\dfrac{1}{3}-39\dfrac{1}{3}\right)\\ =\dfrac{4}{9}\cdot\left(\dfrac{58}{3}-\dfrac{118}{3}\right)\\ =\dfrac{4}{9}\cdot\left(-20\right)\\ =-\dfrac{80}{9}\)
Đây này má Ran mori
a) \(\left(5\dfrac{1}{7}-3\dfrac{3}{11}\right)-2\dfrac{1}{7}-1\dfrac{8}{11}\)
\(=5+\dfrac{1}{7}-3-\dfrac{3}{11}-2-\dfrac{1}{7}-1-\dfrac{8}{11}\)
\(=\left(5-3-2-1\right)+\left(\dfrac{1}{7}-\dfrac{3}{11}-\dfrac{1}{7}-\dfrac{8}{11}\right)\)
\(=-1+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-\left(\dfrac{3}{11}+\dfrac{8}{11}\right)\)
\(=-1+0-1=-2\)
a)\(\left(5\dfrac{1}{7}-3\dfrac{3}{11}\right)-2\dfrac{1}{7}-1\dfrac{8}{11}\)
= \(\left(5+\dfrac{1}{7}-3+\dfrac{3}{11}\right)-2+\dfrac{1}{7}-1+\dfrac{8}{11}\)
= \(5-\dfrac{1}{7}+3-\dfrac{3}{11}-2+\dfrac{1}{7}-1+\dfrac{8}{11}\)
= \(\left(5-3-2-1\right)+\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{8}{11}-\dfrac{3}{11}\)
= \(-1+2+\dfrac{5}{11}\)
= \(1+\dfrac{5}{11}=\dfrac{1}{1}+\dfrac{5}{11}=\dfrac{11}{11}+\dfrac{5}{11}=\dfrac{16}{11}\)
Vậy :câu a) = \(\dfrac{16}{11}\)
B=1/2. (2/25.27+2/27.29+2/29.31+....+2/73.75) B=1/2. (1/25-1/27+1/27-1/29+1/29-1/31+....+1/73-1/75) B=1/2. (1/25-1/75) B=1/2. 2/75 B=1/75
\(3A=\dfrac{3}{8.11}+\dfrac{3}{18.21}+..+\dfrac{3}{197.200}\)
a; \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) = 1 - \(\dfrac{1}{2}\)
Vậy \(\dfrac{1}{1.2}\) = 1 - \(\dfrac{1}{2}\)
b; \(\dfrac{2}{1.3}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) = 1 - \(\dfrac{1}{3}\)
Vậy \(\dfrac{2}{1.3}\) = 1 - \(\dfrac{1}{3}\)