Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T = \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}=\)
T = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}=\)
T = \(\frac{1}{1}-\frac{1}{100}=\)
T = \(\frac{99}{100}\)
A = \(\dfrac{1}{12}\)+ \(\dfrac{1}{20}\)+ \(\dfrac{1}{30}\)+...+\(\dfrac{1}{9900}\)
A = \(\dfrac{1}{3\times4}\)+ \(\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{99\times100}\)
A = \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
A = \(\dfrac{1}{3}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{97}{300}\)
Lời giải:
Gọi tổng trên là $A$
$A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{99.100}$
$=\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}$
$=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}$
$=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}$
a) \(\frac{13}{7}-\frac{1}{2}\times\frac{13}{7}+\frac{3}{2}\times\frac{13}{7}\)
\(=\frac{13}{7}\times\left(1-\frac{1}{2}+\frac{3}{2}\right)\)
\(=\frac{13}{7}\times2\)
\(=\frac{26}{7}\)
b) \(\frac{1}{15}\times\left(\frac{3}{7}+\frac{5}{19}\right)+\frac{3}{7}\times\left(\frac{5}{19}-\frac{1}{15}\right)\)
\(=\frac{1}{15}\times\frac{3}{7}+\frac{1}{15}\times\frac{5}{19}+\frac{3}{7}\times\frac{5}{19}-\frac{3}{7}\times\frac{1}{15}\)
\(=\frac{5}{19}\times\left(\frac{1}{15}+\frac{3}{7}\right)\)
\(=\frac{5}{19}\times\frac{52}{105}\)
\(=\frac{52}{399}\)
c) \(\frac{5}{6}+\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+...+\frac{5}{9900}\)
\(=5\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{99\times100}\right)\)
\(=5\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=5\times\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=5\times\frac{49}{100}\)
\(=\frac{49}{20}\)
Lần sau nên đăng ít thôi
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
1/2 + 1/6 + 1/12 + ... + 1/9900
1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +... + 1/99 - 1/100
1/1 - 1/100
= 99/100
\(\Rightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{6}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}-\frac{1}{3}\)
\(\Rightarrow\frac{1}{42}\cdot\frac{x}{3}=\frac{-2}{21}\)
\(\Rightarrow\frac{x}{3}=\frac{-2}{21}\div\frac{1}{42}\)
\(\Rightarrow\frac{x}{3}=-4\)
\(\Rightarrow\frac{x}{3}=\frac{-12}{3}\)
\(\Rightarrow x=-12\)
x + 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 = 1
x + 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + 1/5*6 + 1/6*7 = 1
x + 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 = 1
x + 1/1 - 1/7 = 1
x + 6/7 = 1
x = 1 - 6/7
x = 1/7
x + 1/2 + 1/6 + 1/20 + 1/30 + 1/42 = 1
x + 65/84 = 1
x = 1 - 65/84
x = 19/84
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
= \(\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\)
=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
=\(\frac{1}{3}-\frac{1}{7}\)
=\(\frac{4}{21}\)
Giúp mình với !!!!!!! One k ^_^
Ta có \(\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\right):x=\frac{1}{5}\)
\(\left(\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+...+\frac{1}{99\times100}\right):x=\frac{1}{5}\)
\(\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right):x=\frac{1}{5}\)
\(\left(\frac{1}{3}-\frac{1}{100}\right):x=\frac{1}{5}\)
\(\frac{97}{300}:x=\frac{1}{5}\)
\(x=\frac{97}{300}:\frac{1}{5}\)
\(x=\frac{97}{60}\)