K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Sửa đề: \(\dfrac{100+\dfrac{99}{2}+\dfrac{98}{3}+...+\dfrac{1}{100}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{101}}-2\)

\(=\dfrac{\left(\dfrac{99}{2}+1\right)+\left(\dfrac{98}{3}+1\right)+...+\left(\dfrac{1}{100}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{101}}-2\)

\(=\dfrac{\dfrac{101}{2}+\dfrac{101}{3}+...+\dfrac{101}{100}+\dfrac{101}{101}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}+\dfrac{1}{101}}-2\)

\(=\dfrac{101\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}+\dfrac{1}{101}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}+\dfrac{1}{101}}-2\)

\(=101-2=99\)

Vậy...

28 tháng 6 2017

Nguyễn Huy Tú TẠI SAO PHAỈ SỬA ĐỀ NHỈ

28 tháng 5 2017

Nguyễn Trần Thành ĐạtXuân Tuấn TrịnhHung nguyenHoang HungQuan Ace Legona giúp với

18 tháng 10 2017

Ta có: \(\dfrac{n^3-1}{n^3+1}=\dfrac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n+1\right)\left(n^2-n+1\right)}=\dfrac{\left(n-1\right)[\left(n+0,5\right)^2+0,75]}{\left(n+1\right)[\left(n-0,5\right)^2+0,75]}\)

Thay vào M ta có:

\(M=\dfrac{2,5^2+0.75}{3.\left(1,5^2+0,75\right)}.\dfrac{2.\left(3,5^2+0,75\right)}{4.\left(2,5^2+0,75\right)}...\dfrac{99[\left(100,5\right)^2+0,75]}{101.[\left(99,5\right)^2+0,75}\)

\(=\dfrac{1.2.3...99}{3.4.5...101}.\dfrac{\left(2,5^2+0,75\right).\left(3,5^2+0,75\right)...[\left(100,5\right)^2+0,75]}{\left(1,5^2+0,75\right).\left(2,5^2+0,75\right)...[\left(99,5\right)^2+0,75]}\)\(=\dfrac{1.2}{100.\left(101\right)}.\dfrac{\left(100,5\right)^2+0,75}{1,5^2+0,75}=\dfrac{2}{3}.\dfrac{\left(100^2+100+1\right)}{3.100.101}>\dfrac{2}{3}\left(đpcm\right)\)

6 tháng 3 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

a)

\(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{100}+\sqrt{101}}\)

\(S=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{2}+\sqrt{1})(\sqrt{2}-\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{101}-\sqrt{100}}{(\sqrt{101}+\sqrt{100})(\sqrt{101}-\sqrt{100})}\)

\(S=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{101}-\sqrt{100}}{101-100}\)

\(S=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\)

\(S=\sqrt{101}-1\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

b)

\(S=\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}+...+\frac{1}{\sqrt{100}+\sqrt{102}}\)

\(S=\frac{\sqrt{4}-\sqrt{2}}{(\sqrt{4}+\sqrt{2})(\sqrt{4}-\sqrt{2})}+\frac{\sqrt{6}-\sqrt{4}}{(\sqrt{6}+\sqrt{4})(\sqrt{6}-\sqrt{4})}+...+\frac{\sqrt{102}-\sqrt{100}}{(\sqrt{102}+\sqrt{100})(\sqrt{102}-\sqrt{100})}\)

\(S=\frac{\sqrt{4}-\sqrt{2}}{4-2}+\frac{\sqrt{6}-\sqrt{4}}{6-4}+....+\frac{\sqrt{102}-\sqrt{100}}{102-100}\)

\(S=\frac{\sqrt{4}-\sqrt{2}+\sqrt{6}-\sqrt{4}+\sqrt{8}-\sqrt{6}+...+\sqrt{102}-\sqrt{100}}{2}\)

\(S=\frac{\sqrt{102}-\sqrt{2}}{2}\)

b: \(\Leftrightarrow\left(\dfrac{29-x}{21}+1\right)+\left(\dfrac{27-x}{23}+1\right)+\left(\dfrac{25-x}{25}+1\right)+\left(\dfrac{23-x}{27}+1\right)+\left(\dfrac{21-x}{29}+1\right)=0\)

=>50-x=0

hay x=50

c: \(\Leftrightarrow\dfrac{x-2}{2001}+1=\dfrac{x-1}{2002}+\dfrac{x}{2003}\)

\(\Leftrightarrow\left(\dfrac{x-2}{2001}-1\right)=\left(\dfrac{x-1}{2002}-1\right)+\left(\dfrac{x}{2003}-1\right)\)

=>x-2003=0

hay x=2003

24 tháng 3 2017

\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)

\(=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)\)

\(=\dfrac{1}{2}.\dfrac{3}{2}.\dfrac{2}{3}.\dfrac{4}{3}...\dfrac{99}{100}.\dfrac{101}{100}\)

\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)

\(=\dfrac{1}{100}.\dfrac{101}{2}\)

\(=\dfrac{101}{200}\)

24 tháng 3 2017

nói mk học lớp 7,ko bt lm bài của Nguyễn Tấn Dũng mà bài lớp 8 nào cũng làm đc.Bài toán khó nào cũng giải đc ,mà câu của Nguyễn Tấn Dũng thì bó tay ,thật ra cậu đang nói sạo hay thật z Nguyễn Huy Túvuilolang???

4 tháng 7 2017

\(a,\\ T=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{8}\right)+...+\left(1-\dfrac{1}{4096}\right)\\ T=\left(1+1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{4096}\right)\)

Gọi \(D=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{4096}\)

\(2D=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2048}\\ 2D-D=\left(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2048}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{4096}\right)\\ D=1-\dfrac{1}{4096}\)

(mk nhớ có cách khác rất hay nhưng quên mất rồi)

Thay \(D\) vào ta được

\(T=\left(1+1+1+...+1\right)-\left(1-\dfrac{1}{4096}\right)\\ T=12-\left(1-\dfrac{1}{4096}\right)\\ T=12-1+\dfrac{1}{4096}\\ T=11\dfrac{1}{4096}\)

7 tháng 7 2018

1)

\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)

\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)

\(\Leftrightarrow x=105\)

b)

\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)

\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)

\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)

\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)

\(\Leftrightarrow50-x=0\)

\(\Leftrightarrow x=50\)

7 tháng 7 2018

2)

\(\left(5x+1\right)^2=\left(3x-2\right)^2\)

\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)

b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)

\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)

\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)

\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)

\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

8 tháng 2 2018

h.

\(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)

\(\Leftrightarrow\dfrac{2-x}{2002}+1-2=\dfrac{1-x}{2003}+1+1-\dfrac{x}{2004}-2\)

\(\Leftrightarrow\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)

\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)

Vì: \(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\ne0\)

Suy ra: 2004 - x = 0

Vậy x = 2004

8 tháng 2 2018

\(a,\dfrac{x-23}{24}+\dfrac{x-23}{25}=\dfrac{x-23}{26}+\dfrac{x-23}{27}\)

\(\Leftrightarrow\dfrac{x-23}{24}+\dfrac{x-23}{25}-\dfrac{x-23}{26}-\dfrac{x-23}{27}=0\)

\(\Leftrightarrow\left(x-23\right)\left(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\right)=0\)

\(\Leftrightarrow x-23=0\) ( vì \(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\ne0\) )

\(\Leftrightarrow x=23\)

Vậy pt có tập nghiệm S = { 23 }

\(b,\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)

\(\Leftrightarrow\dfrac{x+2+98}{98}+\dfrac{x+3+97}{97}-\dfrac{x+4+96}{96}-\dfrac{x+5+95}{95}=0\)

\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)

\(\Leftrightarrow x+100=0\)

\(\Leftrightarrow x=-100\)

Vậy pt có tập nghiệm S = { 100 }

\(c,\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\)

\(\Leftrightarrow\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)

\(\Leftrightarrow\dfrac{x+1+2004}{2004}+\dfrac{x+2+2003}{2003}-\dfrac{x+3+2002}{2002}-\dfrac{x+4+2001}{2001}=0\)

\(\Leftrightarrow\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}-\dfrac{x+2005}{2002}-\dfrac{x+2005}{2001}=0\)

\(\Leftrightarrow\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)=0\)

\(\Leftrightarrow x+2005=0\)

\(\Leftrightarrow x=-2005\)

Vậy pt có tập nghiệm S = { 2005 }

\(d,\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)

\(\Leftrightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)

\(\Leftrightarrow\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}+\dfrac{205-x+95}{95}=0\)

\(\Leftrightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

\(\Leftrightarrow300-x=0\)

\(\Leftrightarrow x=300\)

Vậy pt có tập nghiệm S = { 300 }

\(e,\dfrac{x-45}{55}+\dfrac{x-47}{53}=\dfrac{x-55}{45}+\dfrac{x-53}{47}\)

\(\Leftrightarrow\dfrac{x-45}{55}-1+\dfrac{x-47}{53}-1=\dfrac{x-55}{45}-1+\dfrac{x-53}{47}-1\)

\(\Leftrightarrow\dfrac{x-45-55}{55}+\dfrac{x-47-53}{53}-\dfrac{x-55-45}{45}-\dfrac{x-53-47}{47}=0\)

\(\Leftrightarrow\dfrac{x-100}{55}+\dfrac{x-100}{53}-\dfrac{x-100}{45}-\dfrac{x-100}{47}=0\)

\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\right)=0\)

\(\Leftrightarrow x-100=0\)

\(\Leftrightarrow x=100\)

Vậy pt có tập nghiệm S = { 100 }

\(f,\dfrac{x+1}{9}+\dfrac{x+2}{8}=\dfrac{x+3}{7}+\dfrac{x+4}{6}\)

\(\Leftrightarrow\dfrac{x+1}{9}+1+\dfrac{x+2}{8}+1=\dfrac{x+3}{7}+1+\dfrac{x+4}{6}+1\)

\(\Leftrightarrow\dfrac{x+10}{9}+\dfrac{x+10}{8}-\dfrac{x+10}{7}-\dfrac{x+10}{6}=0\)

\(\Leftrightarrow\left(x+10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}-\dfrac{1}{7}-\dfrac{1}{6}\right)=0\)

\(\Leftrightarrow x+10=0\)

\(\Leftrightarrow x=-10\)

Vậy pt có tập nghiệm S = { 10 }

\(h,\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)

\(\Leftrightarrow\dfrac{2-x}{2002}=\dfrac{1-x}{2003}+\dfrac{-x}{2004}+1\)

\(\Leftrightarrow\dfrac{2-x}{2002}+1=\dfrac{1-x}{2003}+1+\dfrac{-x}{2004}+1\)

\(\Leftrightarrow\dfrac{2-x+2002}{2002}-\dfrac{1-x+2003}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)

\(\Leftrightarrow2004-x=0\)

\(\Leftrightarrow x=2004\)

Vậy pt có tập nghiệm S = { 2004 }

\(g,\dfrac{x+2}{98}+\dfrac{x+4}{96}=\dfrac{x+6}{94}+\dfrac{x+8}{92}\)

\(\Leftrightarrow\dfrac{x+2}{98}+1+\dfrac{x+4}{96}+1=\dfrac{x+6}{94}+1+\dfrac{x+8}{92}+1\)

\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{96}-\dfrac{x+100}{94}-\dfrac{x+100}{92}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{96}-\dfrac{1}{94}-\dfrac{1}{92}\right)=0\)

\(\Leftrightarrow x+100=0\)

\(\Leftrightarrow x=-100\)

Vậy pt có tập nghiệm S = { -100 }