Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : z = \(\frac{m}{n}\)= \(\frac{\frac{a+c}{2}}{\frac{b+d}{2}}=\frac{a+c}{b+d}=\frac{2m}{2n}\)
Nếu x < y thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)\(\Rightarrow\frac{a}{b}< \frac{2m}{2n}< \frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{m}{n}< \frac{c}{d}\)\(\Rightarrow x< z< y\)
Nếu x > y thì : \(\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)\(\Rightarrow\frac{a}{b}>\frac{2m}{2n}>\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}>\frac{m}{n}>\frac{c}{d}\)\(\Rightarrow x>z>y\)
Vậy ...
Z = a+c/2 :b+d/2 =a+c/2 ·2/b+d =a+c/b+d
X =a/b = a(b+d)/b(b+d) =ab+ad/b2+bd
Z= a+c/b+d =(a+c).b/(b+d).b =ab+ac/b2+bd
(+) Nếu a dương ; d< c => ad < ac => ab +ad < ab +ac => X < Z
(+) Nếu a âm ; d< c => ad > ac => ab + ad > ab + ac => X>Z
(+) nếu a dương ; d > c => ad > ac => ab + ad > ab + ac => X > Z
(+) ..................................... ........................................... Z >X
Z = a+c/2 :b+d/2 =a+c/2 ·2/b+d =a+c/b+d
X =a/b = a(b+d)/b(b+d) =ab+ad/b2+bd
Z= a+c/b+d =(a+c).b/(b+d).b =ab+ac/b2+bd
(+) Nếu a dương ; d< c => ad < ac => ab +ad < ab +ac => X < Z
(+) Nếu a âm ; d< c => ad > ac => ab + ad > ab + ac => X>Z
(+) nếu a dương ; d > c => ad > ac => ab + ad > ab + ac => X > Z
(+) ..................................... ........................................... Z >X
Nếu x < y thì \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) hay \(\frac{a}{b}\) < \(\frac{2m}{2n}\) < \(\frac{c}{d}\) suy ra \(\frac{a}{b}\) < \(\frac{m}{n}\) < \(\frac{c}{d}\) , do đó x < z < y
tương tự nếu x > y thì x > z > y
Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> z < y (2)
Từ (1) và (2) => x < z < y
Vì x<y⇒ab <cd ⇒ad<bc (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> ab <a+cb+d
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> a+cb+d <cd
=> z < y (2)
Từ (1) và (2) => x < z < y