Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)
\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
\(1^7+2^7+...+n^7=\frac{6p^4-4p^3+p^2}{3}\)
Trong đó \(p=1+2+...+n=\frac{n\left(n+1\right)}{2}\)
Khác gì lớp 6 đâu đăng nhầm lớp hả:
\(S=\frac{1}{7^2}\left(1^2+2^2+3^2+...+10^2\right)=\frac{1}{7^2}.385=\frac{7.11.5}{7.7}=\frac{11.5}{7}\)
a.
\(2^x=2^{3x-1}\Leftrightarrow x=3x-1\)
\(\Rightarrow x=\dfrac{1}{2}\)
b.
\(7^{x-5}=49\Leftrightarrow x-5=log_749=2\)
\(\Rightarrow x=7\)
c.
\(3^{5x-3}=1\Rightarrow5x-3=log_31=0\)
\(\Rightarrow x=\dfrac{3}{5}\)
d.
\(\left(\dfrac{1}{7}\right)^{5x}=7^{x+6}\Leftrightarrow7^{-5x}=7^{x+6}\)
\(\Leftrightarrow-5x=x+6\)
\(\Rightarrow x=-1\)
c.
\(\Leftrightarrow x^2+3-\left(3x+1\right)\sqrt{x^2+3}+2x^2+2x=0\)
Đặt \(\sqrt{x^2+3}=t>0\)
\(\Rightarrow t^2-\left(3x+1\right)t+2x^2+2x=0\)
\(\Delta=\left(3x+1\right)^2-4\left(2x^2+2x\right)=\left(x-1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x+1-x+1}{2}=x+1\\t=\dfrac{3x+1+x-1}{2}=2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3=x^2+2x+1\left(x\ge-1\right)\\x^2+3=4x^2\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
a.
Đề bài ko chính xác, pt này ko giải được
b.
ĐKXĐ: \(x\ge-\dfrac{7}{2}\)
\(2x+7-\left(2x+7\right)\sqrt{2x+7}+x^2+7x=0\)
Đặt \(\sqrt{2x+7}=t\ge0\)
\(\Rightarrow t^2-\left(2x+7\right)t+x^2+7x=0\)
\(\Delta=\left(2x+7\right)^2-4\left(x^2+7x\right)=49\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+7-7}{2}=x\\t=\dfrac{2x+7+7}{2}=x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+7}=x\left(x\ge0\right)\\\sqrt{2x+7}=x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-7=0\left(x\ge0\right)\\x^2+12x+42=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=1+2\sqrt{2}\)
\(cos^2\left(\dfrac{pi}{7}\right)+cos^2\left(\dfrac{2pi}{7}\right)+cos^2\left(\dfrac{3pi}{7}\right)\)
\(=1-2\cdot cos\left(\dfrac{pi}{7}\right)\cdot cos\left(\dfrac{2pi}{7}\right)\cdot cos\left(\dfrac{3pi}{7}\right)\)
\(=1-2\cdot\dfrac{1}{2}\left[cos\left(\dfrac{pi}{7}+\dfrac{3pi}{7}\right)+cos\left(\dfrac{3pi}{7}-\dfrac{pi}{7}\right)\right]\cdot cos\left(\dfrac{2pi}{7}\right)\)
\(=1-cos\left(\dfrac{2pi}{7}\right)\cdot cos\left(\dfrac{4pi}{7}\right)-cos\left(\dfrac{2pi}{7}\right)\cdot cos\left(\dfrac{2pi}{7}\right)\)
\(=1-cos^2\left(\dfrac{2pi}{7}\right)-cos\left(\dfrac{2pi}{7}\right)\cdot cos\left(\dfrac{4pi}{7}\right)\)
\(=sin^2\left(\dfrac{2pi}{7}\right)-cos\left(\dfrac{2pi}{7}\right)\cdot\left[2\cdot cos^2\left(\dfrac{2pi}{7}\right)-1\right]\)
\(=sin^2\left(\dfrac{2pi}{7}\right)-2\cdot cos^3\left(\dfrac{2pi}{7}\right)+cos\left(\dfrac{2pi}{7}\right)\)
\(sin3x=-\frac{\sqrt{3}}{2}=sin\left(-\frac{\pi}{3}\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x=-\frac{\pi}{3}+k2\pi\\3x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{9}+\frac{k2\pi}{3}\\x=\frac{4\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(sin\left(2x-\frac{\pi}{7}\right)=\frac{\sqrt{2}}{2}=sin\left(\frac{\pi}{4}\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{7}=\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{7}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{11\pi}{56}+k\pi\\x=\frac{25\pi}{56}+k\pi\end{matrix}\right.\)
\(sin\left(4x+1\right)=\frac{3}{5}=sina\) (với góc a sao cho \(sina=\frac{3}{5}\))
\(\Rightarrow\left[{}\begin{matrix}4x+1=a+k2\pi\\4x+1=\pi-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{a}{4}-\frac{1}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{4}-\frac{a}{4}-\frac{1}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
\(sin\left(2x+\frac{\pi}{7}\right)=sin\left(x-\frac{3\pi}{7}\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{7}=x-\frac{3\pi}{7}+k2\pi\\2x+\frac{\pi}{7}=\pi-x+\frac{3\pi}{7}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{4\pi}{7}+k2\pi\\x=\frac{3\pi}{7}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(sin\left(4x+\frac{\pi}{7}\right)=\frac{1}{4}\)
Đặt \(\frac{1}{4}=sina\Rightarrow sin\left(4x+\frac{\pi}{7}\right)=sina\)
\(\Rightarrow\left[{}\begin{matrix}4x+\frac{\pi}{7}=a+k2\pi\\4x+\frac{\pi}{7}=\pi-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{28}+\frac{a}{4}+\frac{k\pi}{2}\\x=\frac{3\pi}{14}-\frac{a}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
\(lim\dfrac{4.3^n+7^n+1}{2.5^n+7^n}\)
\(=lim\dfrac{7^n\left(4.\left(\dfrac{3}{7}\right)^n+1+\dfrac{1}{7^n}\right)}{7^n\left(2.\left(\dfrac{5}{7}\right)^n+1\right)}\)
\(=1\)
\(A=-1+7-7^2+7^3-...-7^{202}\)
\(7A=7\left(-1+7-7^2+7^3-...-7^{202}\right)\)
\(7A=-7+7^2-7^3+...+7^{202}-7^{2003}\)
\(7A+A=\left(-7+...+7^{202}-7^{203}\right)+\left(-1+7-...-7^{202}\right)\)
\(8A=-7^{203}-1\Rightarrow A=\dfrac{-7^{203}-1}{8}\)