Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\((\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99})x=\frac{2}{3}\)
Đặt \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{9.11}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(A=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)
Thay A vào biểu thức
\(\Rightarrow\frac{5}{11}x=\frac{2}{3}\)
\(\Rightarrow x=\frac{22}{15}\)
P/s: Có thể tính sai :(
\(\left[\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right]\times x=\frac{2}{3}\)
Trước tiên mình tính dãy có dấu ngoặc đã
Đặt : \(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(=\frac{1}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}\right]\)
\(=\frac{1}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\right]\)
\(=\frac{1}{2}\left[1-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{11}\right]\)
\(=\frac{1}{2}\left[1-\frac{1}{11}\right]=\frac{1}{2}\cdot\frac{10}{11}=\frac{1\cdot10}{2\cdot11}=\frac{1\cdot5}{1\cdot11}=\frac{5}{11}\)
Thay vào biểu thức \(S=\frac{5}{11}\)ta lại có :
\(\frac{5}{11}\times x=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{2}{3}:\frac{5}{11}\)
\(\Leftrightarrow x=\frac{2}{3}\cdot\frac{11}{5}\)
\(\Leftrightarrow x=\frac{22}{15}\)
Vậy \(x=\frac{22}{15}\)
B=3/2x4/3x...........x2018/2017
=3x4x5x...........x2018/2x3x2x2x............x2017
=2x2018
=4036
A,C tương tự
a) (58 + x) : 5 = 18
58 + x = 18 x 5
58 + x = 90
x = 90 - 58
x = 32
d) 320 : x - 10 = 5 x 48 : 24
320 : x - 10 = 10
320 : x = 10 + 10
320 : x = 20
x = 320 : 20
x = 16
c) (1/15 + 1/35 + 1/63) . x = 1
1/9 . x = 1
x = 1 : 1/9
x = 9
Ta có :
a) \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\)\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
\(=\)\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\)\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\)\(\frac{1}{2}.\frac{4}{15}\)
\(=\)\(\frac{2}{15}\)
Ta có :
\(c)\)\(\frac{1}{1000}+\frac{13}{1000}+\frac{25}{1000}+\frac{37}{1000}+...+\frac{229}{1000}\)
\(=\)\(\frac{1+13+25+37+...+229}{1000}\)
Xét tổng \(1+13+25+37+...+229\):
Số số hạng : \(\left(229-1\right):12+1=20\) ( số hạng )
Tổng : \(\frac{\left(229+1\right).20}{2}=2300\)
Do đó :
\(\frac{1+13+25+37+...+229}{1000}=\frac{2300}{1000}=\frac{23}{10}\)
\(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}\cdot\dfrac{25}{24}\cdot\dfrac{36}{35}=\dfrac{12}{7}\)
= 4/3*9/8*16/15*25/24*36/35
=2*2/1*3 * 3*3/2*4 *4*4/3*5 *5*5/4*6 * 6*6/5*7
= (2*3*4*5*6 / 1*2*3*4*5) * ( 2*3*4*5*6 / 3*4*5*6*7)
=6/1* 2/7
= 12/7