K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

undefined

[Ôn thi vào 10]

Câu I.

1. Giải các phương trình sau:

a. \(x-5=0\)

b. \(x^2-4x+3=0\)

2. Giải hệ phương trình: \(\left\{{}\begin{matrix}2x-y=1\\3x+y=4\end{matrix}\right.\)

Câu II.

Cho biểu thức: \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt[]{x}}\right):\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\) (với \(x>0\) và \(x\ne1\))

1. Rút gọn biểu thức \(A\)

2. Tìm các số nguyên \(x\) để biểu thức \(A\) có giá trị nguyên

Câu III. Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): \(y=mx+1\) và parabol (P): \(y=2x^2\).

1. Tìm \(m\) để đường thẳng (d) đi qua điểm A (1;3)

2. Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A (\(x_1;y_1\)), B (\(x_2,y_2\)).

Hãy tính giá trị của biểu thức \(T=x_1x_2+x_2y_2\).

Câu IV.

Cho tứ giác ABCD nội tiếp đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Gọi F là điểm thuộc đường thẳng AD sao cho EF \(\perp\) AD. Đường thẳng CF cắt đường tròn đường kính AD tại điểm thứ hai là M. Gọi N là giao điểm của BD và CF. Chứng minh rằng:

1. Tứ giác CEFD nội tiếp đường tròn.

2. FA là đường phân giác của góc BFM.

3. BD.NE=BE.ND

Câu V.

Cho \(a,b,c\) là các số dương thỏa mãn: \(a^2+2b^2\le3c^2\).

Chứng minh rằng: \(\dfrac{1}{a}+\dfrac{2}{b}\ge\dfrac{3}{c}\)

5

Câu I

1) 

a) Ta có: x-5=0

nên x=5

Vậy: S={5}

b) Ta có: \(x^2-4x+3=0\)

\(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy: S={1;3}

2) Ta có: \(\left\{{}\begin{matrix}2x-y=1\\3x+y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\\2x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x-1=2\cdot1-1=1\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(1;1)

22 tháng 3 2021

II.

1.

\(A=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right].\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}-1\right)^2}\)

\(=\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\right).\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)

\(=2.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

2.

\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\)

\(A\in Z\Leftrightarrow\sqrt{x}-1\inƯ_2=\left\{\pm1;\pm2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2;3\right\}\)

\(\Leftrightarrow x\in\left\{0;4;9\right\}\)

10 tháng 4 2021

Bài 1 : 

Đặt \(x^2=t\left(t\ge0\right)\)khi đó phương trình tương đương 

\(t+t^2-6=0\)

Ta có : \(\Delta=1+24=25\)

\(t_1=\frac{-1-5}{2}=-3;t_2=\frac{-1+5}{2}=2\)

TH1 : \(x^2=-3\)( vô lí ) 

TH2 : \(x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

Vậy tập nghiệm của phương trình là S = { \(\pm\sqrt{2}\)

5 tháng 5 2021

a) \(x^2+x^4-6=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

⇒ t + \(t^2\) - 6 = 0 

⇒ \(t^2+t-6=0\)

⇒ Δ = \(1^2-4.\left(-6\right)\)

        = 25

x1 = \(\dfrac{-1-5}{2}\) = - 3 (L)

x2 = \(\dfrac{-1+5}{2}\) = 2 (TM)

Thay  \(x^2\) = 2 ⇒ x = \(\pm\sqrt{2}\)

Vậy x = \(\left\{\sqrt{2};-\sqrt{2}\right\}\)

b)   (d) : y = 4x +1 - m

      (p) : y = \(x^2\)

Xét phương trình hoành độ giao điểm

\(x^2=4x+1-m\)

⇒ \(x^2-4x+m-1=0\)

Δ' = 4 - m + 1

    = 5 - m

Để (d) cắt (p) tại hai điểm phân biệt thì Δ' > 0

5 - m > 0 

⇒ m < 5

Vậy m < 5 thì (d) cắt (p) tại hai điểm phân biệt

Gọi tọa độ giao điểm của (d) và (p) là (x1;y1) và (x2;y2)

Theo Vi-ét : \(\left\{{}\begin{matrix}S=x_1+x_2=4\\P=x_1x_2=m-1\end{matrix}\right.\)

và y1 = \(x_1^{2_{ }}\) ; y2 = \(x_2^2\)

Khi đó : \(\sqrt{y_1}.\sqrt{y_2}=5\) ⇒ \(\sqrt{y_1.y_2}=5\)

⇔ \(\sqrt{\left(x_1x_2\right)^2}=5\) ⇔ \(|m-1|=5\)

⇔ \(\left[{}\begin{matrix}m-1=5\\m-1=-5\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}m=6\left(L\right)\\m=-4\left(TM\right)\end{matrix}\right.\)   

Vậy m = - 4 thì TMĐKBT

 

16 tháng 5 2021

1) ĐK \(\hept{\begin{cases}x\ne y\\y\ge-1\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x-y}=a\left(a\ne0\right)\\\sqrt{y+1}=b\left(b\ge0\right)\end{cases}}\)hệ phương trình đã cho trở thành

\(\hept{\begin{cases}2a+b=4\\a-3b=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+b=4\\2a-6b=-10\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=14\\2a+b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}\left(tm\right)}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{x-y}=1\\\sqrt{y+1}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=1\\y+1=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\left(tm\right)\)

Vậy ... 

16 tháng 5 2021
ĐKXĐ: x ≠ y ; y ≥ − 1 Đặt 1 x − y = a ; √ y + 1 = b (ĐK: a ≠ 0 ; b ≥ 0 ) Khi đó hệ phương trình trở thành { 2 a + b = 4 a − 3 b = − 5 ⇔ { 6 a + 3 b = 12 a − 3 b = − 5 ⇔ { 7 a = 7 b = 4 − 2 a ⇔ { a = 1 ( tm ) b = 2 ( tm ) Với ⎧ ⎪ ⎨ ⎪ ⎩ a = 1 b = 2 ⇒ ⎧ ⎪ ⎨ ⎪ ⎩ 1 x − y = 1 √ y + 1 = 2 ⇒ { x − y = 1 y + 1 = 4 ⇔ { x − 3 = 1 y = 3 ⇔ { x = 4 ( tm ) y = 3 ( tm ) Vậy hệ phương trình đã cho có nghiệm { x = 4 y = 3 . 2) Xét phương trình hoành độ giao điểm giữa đường thẳng ( d ) và Parabol ( P ) là: x 2 = 2 ( m − 1 ) x − m 2 + 2 m ⇔ x 2 − 2 ( m − 1 ) x + m 2 − 2 m = 0 (1) a) Với m = 2 phương trình (1) trở thành: x 2 − 2 ( 2 − 1 ) x + 2 2 − 2.2 = 0 ⇔ x 2 − 2 x = 0 ⇔ x ( x − 2 ) = 0 ⇔ [ x = 0 x = 2 - Với x = 0 ⇒ y = 0 2 = 0 ⇒ A ( 0 ; 0 ) - Với x = 2 ⇒ y = 2 2 = 4 ⇒ B ( 2 ; 4 ) Vậy khi m = 2 thì ( P ) cắt ( d ) tại hai điểm phân biệt A ( 0 ; 0 ) ; B ( 2 ; 4 ) . b) Ta có: Δ ′ = b ′ 2 − a c = [ − ( m − 1 ) ] 2 − ( m 2 − 2 m ) = m 2 − 2 m + 1 − m 2 + 2 m = 1 > 0 Do Δ ′ > 0 nên phương trình (1) luôn có hai nghiệm phân biệt x 1 ; x 2 với mọi m . ⇒ Đường thẳng ( d ) luôn cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ x 1 ; x 2 với mọi m . Khi đó theo hệ thức Viet, ta có: { x 1 + x 2 = 2 m − 2 x 1 x 2 = m 2 − 2 m Để đường thẳng ( d ) cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ đối nhau ⇔ x 1 + x 2 = 0 ⇔ 2 m − 2 = 0 ⇔ m = 1 ( tm ) Vậy m = 1 thì đường thẳng ( d ) luôn cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ đối nhau.
16 tháng 5 2021

1) ĐK \(\hept{\begin{cases}x\ge0\\y\ne1\end{cases}}\)

Đặt \(\hept{\begin{cases}2\sqrt{x}=a\left(a\ge0\right)\\\frac{1}{y-1}=b\left(b\ne0\right)\end{cases}}\)hệ phương trình đã cho trở thành 

\(\hept{\begin{cases}a+3b=5\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+6b=10\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=7\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}\left(tm\right)}\)

\(\Rightarrow\hept{\begin{cases}2\sqrt{x}=2\\\frac{1}{y-1}=1\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\left(tm\right)\)

Vậy ... 

4 tháng 6 2021

1,\(\left\{{}\begin{matrix}2\sqrt{x}+\dfrac{3}{y-1}=5\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)       ĐKXĐ:x≥o,y≠1

\(\left\{{}\begin{matrix}4\sqrt{x}+\dfrac{6}{y-1}=10\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{y-1}=7\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\4\sqrt{x}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\left(TM\right)\)

vậy hpt đã cho có nghiệm duy nhất (x,y)=(1,2)

2,a, xét pthđgđ của (d) và (p) khi m=3:

x\(^2\)=3x-1⇔\(x^2-3x+1=0\)

Δ=(-3)\(^2\)-4.1.1=5>0

⇒pt có 2 nghiệm pb

\(x_1=\dfrac{3+\sqrt{5}}{2}\) ,\(x_2=\dfrac{3-\sqrt{5}}{2}\)

thay x=x\(_1\)=\(\dfrac{3+\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:

y=(\(\dfrac{3+\sqrt{5}}{2}\))\(^2\)=\(\dfrac{14+6\sqrt{5}}{4}\)⇒A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\))

thay x=x\(_2\)=\(\dfrac{3-\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:

y=\(\left(\dfrac{3-\sqrt{5}}{2}\right)^2=\dfrac{14-6\sqrt{5}}{4}\)⇒B(\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))

vậy tọa độ gđ của (d) và (p) là A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\)) và B (\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))

b,xét pthđgđ của (d) và (p) :

\(x^2=mx-1\)\(x^2-mx+1=0\) (*)

                       Δ=(-m)\(^2\)-4.1.1=m\(^2\)-4

⇒pt có hai nghiệm pb⇔Δ>0

                                  ⇔m\(^2\)-4>0⇔m>16

với m>16 thì pt (*) luôn có hai nghiệm pb \(x_1,x_2\)

theo hệ thức Vi-ét ta có:

(I) \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=1\end{matrix}\right.\)

\(x_1,x_2\) TM \(x_2\)(x\(_1\)\(^2\)+1)=3

\(x_2.x_1^2\)+\(x_2\)=3⇔\(x_2.x_1.x_1+x_2=3\)⇔(\(x_2.x_1\))(\(x_1+x_2\))=3 (**)

thay  (I) vào (**) ta được:

1.m=3⇔m=3 (TM m≠0)

vậy m=3 thì (d) cắt (p) tại hai điểm pb có hoanh độ \(x_1.x_2\) TM \(x_2\)(\(x_1^2+1\))=3

                      

 

 

Đề thi vào lớp 10_ Hà Nội.(2019-2020)1. Cho hai biểu thức:\(A=\frac{4\left(\sqrt{x}+1\right)}{25-x}\)  và \(B=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0,x\ne25\right)\)1. Tính giá trị biểu thức của A khi x=92.Rút gọn biểu thức B.3. Tìm tất cả giá trị nguyên của x để biểu thức P=A.B đạt giá trị nguyên lớn nhất.2.1.Giải bài toán bằng cách lập phương trình hoặc hệ...
Đọc tiếp

Đề thi vào lớp 10_ Hà Nội.(2019-2020)

1. Cho hai biểu thức:

\(A=\frac{4\left(\sqrt{x}+1\right)}{25-x}\)  và \(B=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0,x\ne25\right)\)

1. Tính giá trị biểu thức của A khi x=9

2.Rút gọn biểu thức B.

3. Tìm tất cả giá trị nguyên của x để biểu thức P=A.B đạt giá trị nguyên lớn nhất.

2.

1.Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:

Hai đội công nhân cùng làm chung một công việc thì sau 15 ngày làm xong. Nếu đội thứ nhất làm riêng trong 3 ngày rồi dừng lại và đội thứ hai làm tiếp công việc đó trong 5 ngày thì cả hai đổi hoàn thành được 25 % công việc. Hỏi nếu mỗi đội làm riêng thì trong bao nhiêu ngày mới xong công việc trên?

2. Một bồn nước inox có dạng hình trụ có chiều cao 1,75m và diện tích đáy là 0,32 \(m^2\). Hỏi bồn nước này đừng đầy được bao nhiêu mét khối nước ? ( Bỏ qua bể đáy của bồn nước).

3.

1. Giải phương trình: \(x^4-7x^2-18=0\)

2. Trong mặt phẳng toạn độ Oxy, cho đường thẳng (d): \(y=2mx-m^2+1\)và Parabol (P): \(y=x^2\).

a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt.

b) Tìm tất cả giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ : \(x_1,x_2\)thỏa mãn:

\(\frac{1}{x_1}+\frac{1}{x_2}=-\frac{2}{x_1.x_2}+1.\)

4.

Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O).

Hai đường cao BE, CF của tam giác ABC cắt nhau tại H.

1. Chứng minh bốn điểm B, C, E, F cùng thuộc một đường tròn.

2. Chứng minh đường thẳng OA vuông góc với đường thẳng EF.

3. Gọi K là trung điểm của đoạn thẳng BC. Đường thẳng AO cắt đường thẳng BC tại điểm I, đường thẳng EF cắt đường thẳng AH tại điểm P. Chứng minh: \(\Delta APE~\Delta AIB\)

và KH // IP

5.

Cho biểu thức \(P=a^4+b^4-ab,\)với a, b là các số thực thỏa mãn : \(a^2+b^2+ab=3\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P.

(p/s: Các em vào thử sức  :))  )

 

 

 

 

 

 

 

8
7 tháng 6 2019

Câu 4:

A B C E F H O I P K Q x

a) Vì BE,CF là các đường cao của \(\Delta\)ABC nên ^BEC = ^CFB = 900

=> ^BEC và ^CFB cùng nhìn đoạn BC dưới một góc 900

=> Bốn điểm B,C,E,F cùng thuộc đường tròn đường kính BC (Theo quỹ tích cung chứa góc) (đpcm).

b) Gọi Ax là tia tiếp tuyến tại A của đường tròn (O), khi đó OA vuông góc Ax

Từ câu a ta thấy tứ giác BFEC nội tiếp đường tròn  (BC) => ^AFE = ^ACB

Mà ^ACB = ^BAx (Tính chất góc tạo bởi tiếp tuyến và dây) nên ^AFE = ^BAx

=> EF // Ax (2 góc so le trong bằng nhau)

Do OA vuông góc Ax nên OA vuông góc EF (Quan hệ song song, vuông góc) (đpcm).

c) +) Ta dễ có ^OAC = 900 - ^AOC/2 = 900 - ^ABC = ^BAH => ^OAC + ^OAH = ^BAH + ^OAH => ^BAI = ^EAP

Xét \(\Delta\)APE và \(\Delta\)AIB: ^EAP = ^BAI, ^AEP = ^ABI (Tứ giác BFEC nội tiếp) => \(\Delta\)APE ~ \(\Delta\)AIB (g.g) (đpcm).

+) Gọi AO cắt đường tròn (O) lần thứ hai tại Q. Khi đó AQ là đường kính của (O)

Nên ta có: ^ABQ = ^ACQ = 900 hay BQ vuông góc AB, CQ vuông góc AC. Mà CH vuông góc AB, BH vuông góc AC

Nên BQ // CH, BH // CQ (Quan hệ song song vuông góc) => Tứ giác BHCQ là hình bình hành

Từ đó HQ đi qua trung điểm K của BC hay H,K,Q thẳng hàng (1)

Cũng dễ thấy ^QBC = ^HCB (Vì BQ // CH) = ^FEH (Vì B,C,E,F cùng thuộc một đường tròn)

Hay ^QBI = ^HEP. Kết hợp với ^BQI = ^BQA = ^ACB = ^AHE (Cùng phụ ^CAH) = ^EHP

Suy ra \(\Delta\)BIQ ~ \(\Delta\)EPH (g.g) => \(\frac{HP}{QI}=\frac{EP}{BI}\). Lại có \(\frac{EP}{BI}=\frac{AP}{AI}\)nên \(\frac{HP}{QI}=\frac{AP}{AI}\)

Áp dụng ĐL Thales đảo vào \(\Delta\)AQH ta có IP // HQ (2)

Từ (1) và (2) ta thu được KH // IP (đpcm).

7 tháng 6 2019

Nếu ko nhìn rõ thì bn có thể tham khảo tại:

https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html

https://vnexpress.net/giao-duc/so-giao-duc-va-dao-tao-ha-noi-cong-bo-dap-an-thi-vao-lop-10-3934904.html

https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html

https://tin.tuyensinh247.com/dap-an-de-thi-vao-lop-10-mon-toan-ha-noi-nam-2019-c29a45461.html

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m=-4

b: PTHĐGĐ là;

1/2x^2-2x+m-1=0

=>x^2-4x+2m-2=0

Δ=(-4)^2-4(2m-2)

=16-8m+8=-8m+24

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

=>m<3

x1x2(y1+y2)+48=0

=>x1x2(x1^2+x2^2)+48=0

=>(2m-2)[4^2-2(2m-2)]+48=0

=>(2m-2)(16-4m+4)+48=0

=>(2m-2)*(20-4m)+48=0

=>40m-8m^2-40+8m+48=0

=>-8m^2+48m+8=0

=>m=3+căn 10 hoặc m=3-căn 10

Câu 1 :Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). Lấy điểm D thuộcdây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm M.1) Chứng minh tức giác CDEM nội tiếp được đường tròn. Xác định tâm I của đường tròn ngoại tiếp tứgiác CDEM.2) Chứng minh AD.ED = BD.CD3) Chứng minh IC là tiếp tuyến của đường tròn (O)Câu 2 : Cho phương...
Đọc tiếp

Câu 1 :Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). Lấy điểm D thuộcdây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm M.

1) Chứng minh tức giác CDEM nội tiếp được đường tròn. Xác định tâm I của đường tròn ngoại tiếp tứgiác CDEM.

2) Chứng minh AD.ED = BD.CD3) Chứng minh IC là tiếp tuyến của đường tròn (O)

Câu 2 : Cho phương trình (ẩn x) : 2x2 - 2mx -m - 5 = 0   (1)

1) Chứng minh rằng với mọi giá trị của m , phương trình (1) luôn có hai nghiệm phân biệt 

2) Gọi x, x2 là hai nghiệm của phương trình (1)

    a) Tính x1 + x2 và x. x2 theo m 

    b) Tìm giá trị của m thỏa mãn hệ thức x1 . (x1 - 2x2) + x2 . (x2 - 2x1) = 15

Câu 3 : 

1) Vẽ đồ thị (P) của hàm số y = x2 trên hệ trục tọa độ Oxy.

2) Bằng phép tính, hãy tìm giá trị của m để đường thẳng (d): y = 2x – 3m cắt parabol (P) tại hai điểm phân biệt 

2
10 tháng 4 2017

Mình xin làm câu Vi-et thôi.

2/ \(2x^2-2mx-m-5=0\left(1\right)\)

a/ ( a = 2; b = -2m; c = -m - 5 )

\(\Delta=b^2-4ac\)

   \(=\left(-2m\right)^2-4.2.\left(-m-5\right)\)

   \(=4m^2+8m+40\)

    \(=\left(2m\right)^2+8m+2^2-2^2+40\)

     \(=\left(2m+2\right)^2+36>0\forall m\)

Vậy pt luôn có 2 nghiệm phân biệt với mọi m

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=\frac{2m}{2}=m\\P=x_1x_2=\frac{c}{a}=\frac{-m-5}{2}\end{cases}}\)

Ta có: \(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=15\)

    \(\Leftrightarrow x_1^2-2x_1x_2+x_2^2-2x_1x_2=15\)

    \(\Leftrightarrow S^2-2P-4x_1x_2=15\)

    \(\Leftrightarrow m^2-2.\frac{-m-5}{2}-4S=15\)

   \(\Leftrightarrow m^2+\frac{2m+10}{2}-4m=15\)

  Quy đồng bỏ mẫu, mẫu chung là 2:

  \(\Leftrightarrow2m^2+2m+10-8m=15\)

  \(\Leftrightarrow2m^2-6m+10=15\)

 \(\Leftrightarrow2\left(m^2-3m+5\right)=15\)

 \(\Leftrightarrow m^2-3m+5=\frac{15}{2}\)

 \(\Leftrightarrow m^2-3m+5-\frac{15}{2}=0\)

  \(\Leftrightarrow m^2-3m-\frac{5}{2}=0\)

 \(\Leftrightarrow m^2-3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-\frac{5}{2}=0\)

\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2-\frac{19}{4}=0\)

\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\frac{19}{4}\)

\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\left(\frac{\sqrt{19}}{2}\right)^2\)

\(\Leftrightarrow m-\frac{3}{2}=\frac{\sqrt{19}}{2}\Leftrightarrow m=\frac{3+\sqrt{19}}{2}\)

Vậy:..

2 tháng 11 2017

 Cho hàm số y=f(x)=x3-3x2+1

a)Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của Phương trình f’’(x)= 0.

b)Viết công thức chuyển hệ tọa độ trong phép tịnh tiến vectơ OI và viết Phương trình của đường cong với hệ tọa độ IXY. Từ đó suy ra bằng I là tâm đối xứng đường cong (C).

c)Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hện tọa độ Oxy. Chứng minh rằng trên khoảng (-∞;1) đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng (1; +∞) đường cong (C) nằm phía trên tiếp tuyến đó.

Cho hàm số y = -x² có đổ thị là parabol (P). a) Vẽ parabol (P) trên mặt phẳng tọa độ; b) Viết phương trinh đường thẳng (d), biết rằng (d) cắt parabol (P) tại điểm có hoành độ bằng 2 và cắt trục tung tại điểm có tung độ bằng 1. c) Hãy tìm góc tạo bởi đường thẳng (d) vừa xác định ở câu b) và trục Ox (làm tròn đến độ). Câu 3: (2,0 điểm) Cho phương trình ẩn x, tham số m: x² + (m- 1)x-m 0...
Đọc tiếp

Cho hàm số y = -x² có đổ thị là parabol (P). a) Vẽ parabol (P) trên mặt phẳng tọa độ; b) Viết phương trinh đường thẳng (d), biết rằng (d) cắt parabol (P) tại điểm có hoành độ bằng 2 và cắt trục tung tại điểm có tung độ bằng 1. c) Hãy tìm góc tạo bởi đường thẳng (d) vừa xác định ở câu b) và trục Ox (làm tròn đến độ). Câu 3: (2,0 điểm) Cho phương trình ẩn x, tham số m: x² + (m- 1)x-m 0 a) Chứng minh phương trình luôn có nghiệm với mọi m; b) Tim m để phương trình có hai nghiệm x, X2; X < X2 sao cho x - 2x = -2. Câu 4: (2,0 điểm) Cho đường tròn (0; 6cm) và A là điểm nằm ngoài đường tròn (0) sao cho OA = 10cm. Qua A về các tiếp tuyến AB, AC với đường tròn (0) (B,C là các tiếp điểm); AO cắt BC tại H. a) Chứng minh tứ giác OBAC nội tiếp được; b) Tính độ dài đoạn thẳng BH; c) Vẽ đường kính BD của đường tròn (0). Chứng minh CD I OA

0
18 tháng 5 2021

1/

\(\hept{\begin{cases}3x+4y=6\left(1\right)\\2x-y=-7\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow8x-4y=-28\left(3\right)\)

Cộng 2 vế của (1) với (3) \(\Rightarrow11x=-22\Rightarrow x=-2\) Thay vào (2) \(\Rightarrow2.\left(-2\right)-y=-7\Rightarrow y=3\)

2/

a/ d cắt p tại 2 điểm phân biệt khi \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\) có 2 nghiệm phân biệt

Điều kiện \(\Delta=25+4m>0\Leftrightarrow m>-\frac{25}{4}\)

b/ Khi m=-4

\(x^2-5x+4=0\Rightarrow x_1=1;x_2=4\)

Khi m=-4 d cắt p tại 2 điểm phân biệt A(1;0) và B(4;0)