Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2\left(x+1\right)^2+3\left(x-2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2-4x+4\right)+4\left(x^2+6x+9\right)\)
\(=x^2+2x^2+4x+2+3x^2-12x+12+4x^2+24x+36\)
\(=10x^2+16x+50\)
2:
-8x^6-12x^4y-6x^2y^2-y^3
=-(8x^6+12x^4y+6x^2y^2+y^3)
=-(2x^2+y)^3
3:
=(1/3)^2-(2x-y)^2
=(1/3-2x+y)(1/3+2x-y)
\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2+4x+4\right)+4\left(x^2+6x+9\right)\)
\(=x^2+2x^2+4x+2+3x^2+12x+12+4x^2+24x+36\)
\(=10x^2+40x+50\)
\(x^2+2\left(x+1\right)^2+3\left(x+1\right)^2+4\left(x+1\right)^2\)
\(=x^2+9\left(x+1\right)^2\)
\(=x^2+3^2.\left(x+1\right)^2\)
\(=x^2+\left(3x+3\right)^2\)
Ta có :
\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2\left(x^2+2+1\right)+3\left(x^2+4x+4\right)+4\left(x^2+6x+9\right)\)
\(=x^2+2x^2+4x+2+3x^2+12x+12+4x^2+24x+36\)
\(=10x^2+40x+50\)
\(=\left(x^2+10x+25\right)+\left(9x^2+30x+25\right)\)
\(=\left(x+5\right)^2+\left(3x+5\right)^2\)
Vậy biểu thức trên viết được dưới dạng tổng các bình phương của 2 biểu thức(đpcm)
a)\(3599=3600-1=60^2-1^2=\left(60-1\right).\left(60+1\right)=59.61\)
b)\(899=900-1=30^2-1^2=\left(30-1\right).\left(30+1\right)=29.31\)
c)\(9991=10000-9=100^2-3^2=\left(100-3\right)\left(100+3\right)=97.103\)