K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

minh dang can gap

11 tháng 12 2018

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)

Đặt: x2+5x+4=t

Ta có:

\(t\left(t+2\right)-120=t^2+2t-120=t^2+12t-10t-120=t\left(t+12\right)-10\left(t+12\right)\)

\(=\left(t+12\right)\left(t-10\right)=\left(x^2+5x+16\right)\left(x^2+5x-6\right)\)

23 tháng 11 2017

1. <=> (x-2).(2x+3) = 0

<=> x-2=0 hoặc 2x+3 = 0

<=> x=2 hoặc x=-3/2

2. <=> x^2-4x+4-x^2+9 = 0

<=> 13-4x=0

<=> 4x=13

<=> x = 13/4

3.<=>4x^2-24x+36 - 4x^2+1 =  10

<=> 37-24x = 10

<=> 24x = 37 - 10 = 27

<=> x = 27 : 24 = 9/8

k mk nha

23 tháng 11 2017

2. \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(x^2-4x+4-x^2+9=0\)

\(-4x+13=0\)

\(-4x=-13\)

\(x=\frac{13}{4}\)

vậy \(x=\frac{13}{4}\)

9 tháng 2 2017

Bài 3a)

\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

mà \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\)

9 tháng 1 2019

PTĐTTNT?

1.Đặt \(a^2+a=t\)

\(\Rightarrow\left(a^2+a\right)\left(a^2+a+1\right)-2\)

\(=t\left(t+1\right)-2\)

\(=t^2+t-2\)

\(=t^2+2t-\left(t+2\right)\)

\(=t\left(t+2\right)-\left(t+2\right)\)

\(=\left(t+2\right)\left(t-1\right)\)

9 tháng 1 2019

Sửa đề: 

\(x^4+2011x^2+2010x+2011\)

\(=\left(x^4-x\right)+2011x^2+2011x+2011\)

\(=x\left(x^3-1\right)+2011\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2011\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2011\right)\)

3. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)

Đặt \(x^2+5x+4=t\)

\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120\)

\(=t\left(t+2\right)-120\)

\(=t^2+2t+1-121\)

\(=\left(t+1\right)^2-11^2\)

\(=\left(t+1-11\right)\left(t+1+11\right)\)

\(=\left(t-10\right)\left(t+12\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+16\right)\)

\(=\left[\left(x^2-x\right)+\left(6x-6\right)\right]\left(x^2+5x+16\right)\)

\(=\left[x.\left(x-1\right)+6\left(x-1\right)\right]\left(x^2+5x+16\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x^2+5x+16\right)\)

4. \(\left(x^2+x+4\right)^2+8x\left(x^2+x+1\right)+15x^2\)

\(=\left(x^2+x+4\right)^2+2.\left(x^2+x+1\right).4x+\left(4x\right)^2-x^2\)

\(=\left(x^2+x+4+4x\right)^2-x^2\)

\(=\left(x^2+4+5x-x\right)\left(x^2+5x+x+4\right)\)

\(=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)

\(=\left(x+2\right)^2\left[\left(x^2+2.x.3+3^2\right)-\left(\sqrt{5}\right)^2\right]\)

\(=\left(x+2\right)^2\left[\left(x+3\right)^2-\left(\sqrt{5}\right)^2\right]\)

\(=\left(x+2\right)^2\left(x+3-\sqrt{5}\right)\left(x+3+\sqrt{5}\right)\)