K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

2)  Ta có: \(\hept{\begin{cases}3x=2y;7y=5z\\x-y+z=32\end{cases}\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}.}\)

                                                                                           \(\Rightarrow\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

Vậy \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)

Ủng hộ nha m.n

28 tháng 7 2019

1.Gọi \(\frac{a}{b}=\frac{c}{d}=k\) 

\(\Rightarrow a=bk\)

      \(c=dk\)  

Ta có

\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b.\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)

\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d.\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{a}{a-b}=\frac{c}{c-d}\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\)

\(\frac{a}{c}=\frac{bk}{dk}=\frac{b}{d}\left(1\right)\)

\(\frac{a-b}{c-d}=\frac{bk-b}{dk-d}=\frac{b.\left(k-1\right)}{d.\left(k-1\right)}=\frac{b}{d}\left(2\right)\)

Từ ( 1 ) và ( 2  ) \(\Rightarrow\frac{a}{c}=\frac{a-b}{a-c}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

Các phần khác em cũng đặt = k  và làm tương tự nha bây giờ ah đang vội nên không thể làm cho e đc sorry

Study well