Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2016(x-1)2016 + 2017(y-1)2018 = 0
Mà 2016(x-1)2016 \(\ge\)0 ; 2017(y-1)2018 \(\ge\)0
=> 2016(x-1)2016 = 2017(y-1)2018 =0
=> x-1 = y-1 = 0
=> x=y=1
Cho hai x,y thỏa mãn: (x-2)2016+ số đối của y+1 = 0
tính giá trị của biểu thức A=2x2y2016-3(x+y)2017
Cho hai x,y thỏa mãn: (x-2)2016+ số đối của y+1 = 0
tính giá trị của biểu thức A=2x2y2016-3(x+y)2017
ta có : (x-2)^2016 - (y+1)=0
mà (x-2)^2016>=0 với mọi x ϵ R
nên biểu thức có GT bằng 0
.<=> x-2=0 và y+1= 0
=>x=2 ,y=-1
Thay x=2 , y=-1 vào biểu thức A ta được :
A= 2.2^2.(-1)^2016 - 3.(2-1)^2017
= 8.2016 - 3.2017
=16128 - 6051
= 10077
Vậy giá trị của A là 10077
Bài 2
\(\left|3x-101\right|=200\)
\(\Rightarrow3x-101=200\) hoặc \(3x-101=-200\)
\(\Rightarrow3x=301\) hoặc \(3x=-99\)
\(\Rightarrow x=\frac{301}{3}\) hoặc \(x=-33\)
Bài 3:
\(\left(7x-1\right)^{12}=25^6\)
\(\Rightarrow\left(7x-1\right)^{12}=\left(5^2\right)^6\)
\(\Rightarrow\left(7x-1\right)^{12}=5^{12}\)
\(\Rightarrow7x-1=5\)
\(\Rightarrow7x=6\)
\(\Rightarrow x=\frac{6}{7}\)
a) ( x - 1 )2 + ( y + 3 )4 = 0
=> ( x - 1 )2 = 0 và ( y + 3 )4 = 0
+) ( x - 1 )2 = 0 => x - 1 = 0 => x = 1
+) ( y + 3 )4 = 0 => y + 3 = 0 => y = -3
Vậy x = 1; y = -3
b) | x + 3y - 1 | + ( 3y - 2 )2016 = 0
=> | x + 3y - 1 | = 0 và ( 3y - 2 )2016 = 0
+) ( 3y - 2 )2016 = 0
=> 3y - 2 = 0
=> 3y = 2
\(\Rightarrow y=\frac{2}{3}\)
+) | x + 3y - 1 | = 0
=> x + 3y - 1 = 0
\(\Rightarrow x+\frac{2}{3}.3-1=0\)
=> x + 2 - 1 = 0
=> x + 1 = 0
=> x = -1
Vậy \(y=\frac{2}{3};x=-1\)
Vì (x - 1)2 ≥ 0 ; ( y + 3)4 ≥ 0 với mọi x
Để (x - 1)2 + ( y + 3)4 = 0
<=> (x - 1)2 = 0 và ( y + 3)4 =0
<=> x - 1 = 0 và y + 3 = 0
=> x = 2 và y = - 3
ý b tương tự
a) Ta có : 2017 - |x - 2017| = x
=> |x - 2017| = 2017 - x (1)
Điều kiện xác định : \(2017-x\ge0\Rightarrow2017\ge x\Rightarrow x\le2017\)
Khi đó (1) <=> \(\orbr{\begin{cases}x-2017=2017-x\\x-2017=-\left(2017-x\right)\end{cases}\Rightarrow\orbr{\begin{cases}2x=2017+2017\\x-2017=-2017+x\end{cases}\Rightarrow}\orbr{\begin{cases}2x=4034\\0x=0\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=2017\\x\text{ thỏa mãn }\Leftrightarrow x\le2017\end{cases}}\Rightarrow x\le2017\)
b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2016}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2016}\ge\\\left|x+y+z\right|\ge0\forall x;y;z\end{cases}0\forall y}\Rightarrow\left(2x-1\right)^{2016}+\left(y-\frac{2}{5}\right)^{2016}+\left|x+y+z\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=-\frac{9}{10}\end{cases}}}\)
cau 2 =0 nha giai chi tiet
1) (x + 2016)2016 + |y - 2017|2017 = 0
\(\Leftrightarrow\hept{\begin{cases}\left(x+2016\right)^{2016}=0\\\left|y-2017\right|^{2017}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2016=0\\y-2017=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2016\\y=2017\end{cases}}\)