K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

Mik lười quá bạn tham khảo câu 3 tại đây nhé:

Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath

22 tháng 7 2019

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)

\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)

\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)

14 tháng 4 2017

a) Ta có:

\(\frac{1}{n-1}-\frac{1}{n}=\frac{n-\left(n-1\right)}{n\left(n-1\right)}=\frac{1}{n\left(n-1\right)}>\frac{1}{n.n}=\frac{1}{n^2}\left(1\right)\)

\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}< \frac{1}{n.n}=\frac{1}{n^2}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:

\(\frac{1}{n\left(n-1\right)}>\frac{1}{n^2}>\frac{1}{n\left(n+1\right)}\)

Hay \(\frac{1}{n-1}-\frac{1}{n}>\frac{1}{n^2}>\frac{1}{n}-\frac{1}{n+1}\) (Đpcm)

20 tháng 8 2016

Có : \(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)

Và : \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

Thấy: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

Vậy: \(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n+1}\) (đpcm)

20 tháng 8 2016

các bạn ơi giúp mk với ! hiha

25 tháng 1 2018

Tham khảo theo link này nhé!

Chứng minh: 1/2^3 + 1/3^3 + 1/4^3 + ... + 1/n^3 < 1/4 với n thuộc N, n ≥ 2 - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

29 tháng 6 2020

\(A< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left(n-1\right)\cdot n\cdot\left(n+1\right)}\)

Nhận xét: mỗi số hạng tổng có dạng

\(\frac{1}{\left(n-1\right)\cdot n\cdot\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n\left(n-1\right)}-\frac{1}{n\left(n+1\right)}\right)\)

Từ đó suy ra: \(A< \frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\right)< \frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}\left(đpcm\right)\)