K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Ta có : \(\frac{a+2014}{a-2014}=\frac{a+2015}{a-2015}\)

\(\Rightarrow\left(a+2014\right)\left(a-2015\right)=\left(a-2014\right)\left(a+2015\right)\)

\(\Rightarrow a^2-a-2014.2015=a^2+a-2014.2015\)

\(\Leftrightarrow a^2-a=a^2+a\)

=> a2 - a2 - a = a

=> -a = a

=>  0 = a + a

=> 2a = 0

=> a = 0 

Vậy \(\frac{a}{2014}=\frac{b}{2015}\) (đpcm)

14 tháng 8 2017

a, \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2012\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}=\frac{1}{2012}\)

b, \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+1}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{\frac{2017}{1}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}=\frac{1}{2017}\)

\(\frac{a+2014}{a-2014}=\frac{b+2015}{b-2015}\Rightarrow\left(a+2014\right)\left(b-2015\right)=\left(a-2014\right)\left(b+2015\right)\)

\(\Rightarrow\frac{a+2014}{b+2015}=\frac{a-2014}{b-2015}=\frac{a+2014+a-2014}{b+2015+b-2015}=\frac{2a}{2b}=\frac{a}{b}\)

\(\Rightarrow\frac{a+2014}{b+2015}=\frac{a}{b}=\frac{a+2014-a}{b+2015-b}=\frac{2014}{2015}\)

\(\frac{a}{b}=\frac{2014}{2015}\Rightarrow2015a=2014b\Rightarrow\frac{a}{2014}=\frac{b}{2015}\)

\(\Rightarrowđpcm\)

27 tháng 2 2015

2. -3\(\sqrt{3}\)

22 tháng 3 2016

<=>x+2015/2013

30 tháng 8 2015

chiu vi bai nay qua kho 

30 tháng 8 2015

\(\frac{a+2014}{a-2014}=\frac{b+2015}{b-2015}\Rightarrow\left(a+2014\right)\left(b-2015\right)=\left(a-2014\right)\left(b+2015\right)\)

                                  \(\Rightarrow\)    \(ab+2014b-2015a-2014.2015=ab+2015a-2014b-2014.2015\)

                         \(\Rightarrow\)  \(\left(ab-ab\right)+\left(-2014.2015+2014.2015\right)=\left(2015a+2015a\right)-\left(2014b+2014b\right)\)

                               \(\Rightarrow0+0=4030a-4028b\)                        

                                 \(\Rightarrow4030a=4028b\)    \(\Rightarrow\frac{a}{b}=\frac{4028}{4030}=\frac{2014}{2015}\Rightarrow\frac{a}{2014}=\frac{b}{2015}\)

Vậy nếu \(\frac{a+2014}{a-2014}=\frac{b+2015}{b-2015}\) thì \(\frac{a}{2014}=\frac{b}{2015}\) (đpcm)

3 tháng 7 2017

Ta có :

\(\frac{a}{b}< \frac{2015}{2013}\)

\(\Rightarrow2013a< 2015b\)

\(\Rightarrow2013a+ab=2015b+ab\)

\(\Rightarrow a.\left(2013+b\right)=b.\left(2015+a\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a+2015}{b+2013}\)

31 tháng 1 2017

Đặt \(\frac{a}{2013}=\frac{b}{2014}=\frac{c}{2015}=k\) => a=2013k; b=2014k; c=2015k

Ta có: 4(a-b)(b-c) = 4(2013k-2014k)(2014k-2015k)

= 4(-k)(-k) = 4k2 (1)

Lại có: (c-a)2 = (2015k-2013k)2 = (2k)2 = 4k2 (2)

Từ (1) và (2) => 4(a-b)(b-c)=(c-a)2 (đpcm)

31 tháng 1 2017
Đặt a/2013=b/2014=c/2015=ka2013=b2014=c2015=k
=> a=2013k; b=2014k; c=2015k

Ta có: 4(a-b)(b-c) = 4(2013k-2014k)(2014k-2015k)

= 4(-k)(-k) = 4k2 (1)

Lại có: (c-a)2 = (2015k-2013k)2 = (2k)2 = 4k2 (2)

Từ (1) và (2) => 4(a-b)(b-c)=(c-a)2 (đpcm)

Các bạn k cần trả lời nữa! Thông cảm nha! thanghoa