K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

Gọi ƯCLN của tử và mẫu là d. 

Ta có : \(12n+1⋮d\) hay \(60n+5⋮d\)

             \(30n+2⋮d\) hay \(60n+4⋮d\)

=> \(60n+5-60n-4⋮d\) hay \(1⋮d\)

=> d=1 vậy phân số tối giản.

8 tháng 3 2018

hai phân số đó không thể Cung chia hết cho một số tự nhiên nao lớn hơn 1 nên là phân số tối giản

1 tháng 2 2018

cau hoi anh google

1 tháng 2 2018

anh google ko giup đc tui\

29 tháng 3 2021

Ta chứng minh phân số này có tử và mẫu là  hai số nguyên tố cùng nhau .

 Gọi dd  là ước chung của 12n+130n+212n+130n+2

Ta có :

5(12n+1)2(30n+2)=1d5(12n+1)-2(30n+2)=1⋮d

 Vậy d=1d=1  nên 12n+112n+1 nguyên tố cùng nhau.

⇒ 12n+130n+212n+130n+2 là phân số tối giản

\(A=\frac{12n+1}{30n+2}\)

Gọi \(d\inƯC\left(12n+1,30n+2\right)\)

Ta có :

\(5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Leftrightarrow60n+5-60n+4⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)

Gọi \(d\inƯC\left(12n+1;30n+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow60n+5-60n-4⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)

hay phân số \(A=\dfrac{12n+1}{30n+2}\) là phân số tối giản(đpcm)

19 tháng 3 2021

Gọi d∈ƯC(12n+1;30n+2)d∈ƯC(12n+1;30n+2)

⇔⎧⎨⎩12n+1⋮d30n+2⋮d⇔⎧⎨⎩60n+5⋮d60n+4⋮d⇔{12n+1⋮d30n+2⋮d⇔{60n+5⋮d60n+4⋮d

⇔60n+5−60n−4⋮d⇔60n+5−60n−4⋮d

⇔1⋮d⇔1⋮d

⇔d∈Ư(1)⇔d∈Ư(1)

⇔d∈{1;−1}⇔d∈{1;−1}

⇔ƯCLN(12n+1;30n+2)=1⇔ƯCLN(12n+1;30n+2)=1

vậy A=12n+130n+2A=12n+130n+2 là phân số tối giản

18 tháng 3 2016

GỌI Đ LÀ ƯC 12N+1,30N+2

=>12N+1 CHIA HẾT CHO Đ=>5(12n+4) cha hết cho đ

=>30n+2 ..........................đ=>2(30n+5)....................

=>60n+4 ,60n+5 chia hết cho Đ

=>1 chia hết cho Đ ,Đ=1

=>12n+1\30n+2 là p\s toois giản

DD
2 tháng 4 2021

Đặt \(d=\left(x+1,2021x+2020\right)\).

Suy ra 

\(\hept{\begin{cases}x+1⋮d\\2021x+2020⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2021x+2021⋮d\\2021x+2020⋮d\end{cases}}\Rightarrow\left(2021x+2021\right)-\left(2021x+2020\right)=1⋮d\)

suy ra \(d=1\).

Suy ra đpcm.