Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)
đặt \(\left(x^2+x\right)=t\) ta có
\(t^2+4t-12=0\)
\(\Leftrightarrow t^2+6t-2t-12=0\)
\(\Leftrightarrow t\left(t+6\right)-2\left(t+6\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)
khi đó giả lại biến \(\left(x^2+x\right)\) rồi làm như bình thường
1. = [(x^2-2xy+y^2)+2.(x-y).2+4] - 9
= (x-y+2)^2-9
= (x-y+2-3).(x-y+2+3) = (x-y-1).(x-y+5)
2. Có : n^3+n+2 = (n^3+1)+(n+1) = (n+1).(n^2-n+1+1) = (n+1).(n^2-n+2)
Nếu n lẻ => n+1 chia hết cho 2 => n^3+n+2 chia hết cho 2
Mà n^3+n+2 > 2 => n^3+n+2 là hợp sô
Nếu n chẵn thì n^2 chia hết cho 2 => n^2-n+2 chia hết cho 2 => n^3+n+2 chia hết cho 2
Mà n^3+n+2 > 2 = >n^3+n+2 là hợp số
Tk mk nha