K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2016

Chào ng đẹp

Ta có Ix1-x2I=căn((x1-x2)^2)=căn((x1+x2)^2-4x1x2)=1 (*)

áp dụng viét

x1+x2=4m

x1x2=4m-1

thay vô (*)

ta dc           căn(16m-4(4m-1))=1

giải pt ra

28 tháng 4 2016

câu mở đầu của bạn hay gê

sao ko bình phương 2 vế cho mất căn đi có phải dễ tính hơn ko

8 tháng 6 2016

PT có 2 no dương \(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\x1.x2>0\\x1+x2>0\end{cases}}\) .... tự giải đoạn này nhé bạn
sau đó viet thay vào Q giải bình thường 

10 tháng 3 2018

a)cho m=0 =>x tự làm theo ct nhe 
B) pt co 2 n <=> delta=1-(m-1)>0 <=>m<2 
c)viet x1^2+x2^2=(x1+x2)^2-2x1x2 
=2^2-2(m-1)=10 =>m=-2

10 tháng 3 2018

yheem đap an đi

NV
15 tháng 6 2020

Bạn ghi ko đúng đề, thứ nhất pt này chỉ có 1 vế (thiếu)

Thứ 2 nếu pt này là \(x^2+2\left(m+1\right)x-2m=0\) thì cũng ko có nghiệm với mọi m (chứ ko phải x)

Ví dụ với \(m=-1\) pt thành: \(x^2+2=0\) (vô nghiệm)

Do đó đề sai

15 tháng 5 2018

dễ vậy hỏi làm gì bạn ? 

15 tháng 5 2018

Mình không biết làm mới cần giải hộ chớ

25 tháng 5 2019

a. Δ' = b'2 - ac = (m-1)2 - (-2m-3) = m2 - 2m + 1 + 2m + 3

= m2 + 4 ≥ 4 > 0 ∀ m ∈ R

Vậy pt đã cho luôn có hai nghiệm x1; x2 phân biệt với mọi m thuộc R

b. Áp dụng Viet, ta có \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1\cdot x_2=-2m-3\end{matrix}\right.\)

Theo đề ta có \(\left(4x_1+5\right)\left(4x_2+5\right)+19=0\)

\(16x_1x_2+20x_1+20x_2+25+19=0\)

\(16x_1x_2+20\left(x_1+x_2\right)+44=0\)

\(16\left(-2m-3\right)+20\left[-2\left(m-1\right)\right]+44=0\)

\(-32m-48-40m+40+44=0\)

\(-72m+36=0\Leftrightarrow m=\frac{1}{2}\)

Vậy với m = \(\frac{1}{2}\)thì pt đã cho có hai nghiệm x1; x2 thỏa mãn điều kiện \(\left(4x_1+5\right)\left(4x_2+5\right)+19=0\)

25 tháng 5 2016

Bảo Ngọc tính nghiệm bị sai!

25 tháng 5 2016

a) Ta xét : 

\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)

Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.

b) Dễ thấy : x1<x2 nên ta có : 

\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)

\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)

\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)

\(\Leftrightarrow m=2\)

Vậy m = 2

30 tháng 5 2017

đầu bài thiếu yêu cầu rồi

30 tháng 5 2017

| x1​2 - x22​​| = 15 mình viết thiếu giải hộ mình với.Cảm ơn bạn