Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ghi ko đúng đề, thứ nhất pt này chỉ có 1 vế (thiếu)
Thứ 2 nếu pt này là \(x^2+2\left(m+1\right)x-2m=0\) thì cũng ko có nghiệm với mọi m (chứ ko phải x)
Ví dụ với \(m=-1\) pt thành: \(x^2+2=0\) (vô nghiệm)
Do đó đề sai
a. Δ' = b'2 - ac = (m-1)2 - (-2m-3) = m2 - 2m + 1 + 2m + 3
= m2 + 4 ≥ 4 > 0 ∀ m ∈ R
Vậy pt đã cho luôn có hai nghiệm x1; x2 phân biệt với mọi m thuộc R
b. Áp dụng Viet, ta có \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1\cdot x_2=-2m-3\end{matrix}\right.\)
Theo đề ta có \(\left(4x_1+5\right)\left(4x_2+5\right)+19=0\)
⇔ \(16x_1x_2+20x_1+20x_2+25+19=0\)
⇔ \(16x_1x_2+20\left(x_1+x_2\right)+44=0\)
⇔ \(16\left(-2m-3\right)+20\left[-2\left(m-1\right)\right]+44=0\)
⇔ \(-32m-48-40m+40+44=0\)
⇔ \(-72m+36=0\Leftrightarrow m=\frac{1}{2}\)
Vậy với m = \(\frac{1}{2}\)thì pt đã cho có hai nghiệm x1; x2 thỏa mãn điều kiện \(\left(4x_1+5\right)\left(4x_2+5\right)+19=0\)
a) Ta xét :
\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)
Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.
b) Dễ thấy : x1<x2 nên ta có :
\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)
\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)
\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)
\(\Leftrightarrow m=2\)
Vậy m = 2
| x12 - x22| = 15 mình viết thiếu giải hộ mình với.Cảm ơn bạn
Chào ng đẹp
Ta có Ix1-x2I=căn((x1-x2)^2)=căn((x1+x2)^2-4x1x2)=1 (*)
áp dụng viét
x1+x2=4m
x1x2=4m-1
thay vô (*)
ta dc căn(16m-4(4m-1))=1
giải pt ra
câu mở đầu của bạn hay gê
sao ko bình phương 2 vế cho mất căn đi có phải dễ tính hơn ko