Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài nà viết sai đề
\(N=2n^4-7n^3-2n^3+13n+6=(n-2)(n-3)(n+1)(2n+1)\)
(*) Ta có n\(\in Z\)=> n-2,n-3 là 2 số nguyên liên tiếp=> có 1 số \(\vdots 2\)
=> (n-2)(n-3)(n+1)(2n+1)\(\vdots 2\) (1)
(*) Vì n là số nguyên nên có 3 dạng 3k,3k+1,3k+2
Với n=3k=>n-3 \(\vdots 3\)=>\(N\vdots 3\)
Với n=3k+1=>\(2n+1 \vdots 3\)=> N\(\vdots 3\)
Với n=3k+2=> n+1 \(\vdots 3\)=> N \(\vdots 3\)
=> N\(\vdots 3 mọi n\)(2)
Từ (1),(2) kết hợp (2,3)=1=> N\(\vdots 6\)
Vậy N chia hết cho 6
Ta có
x4 - 4x3 - 4x2 + 16 = (x - 4)(x - 2)x(x + 2)
Đây là tích của 4 số chẵn liên tiếp
Trong 4 số chẵn liên tiếp sẽ có 1 số chia hết cho 2, 1 số chia hết cho 4, 1 số chia hết cho 6, 1 số chia hết cho 8
Vậy số đó chia hết cho 2×4×6×8 = 384
Ta có
x4 + 2x3 - x2 - 2x = (x - 1)x(x + 1)(x + 2)
Trong bốn số liên tiếp có 2 số chẵn trong 2 số chẵn đó có 1 số chia hết cho 2 và 1 số chia hết cho 4 nên nó chia hết cho 8
Trong 4 số liên tiếp có 1 số chia hết cho 3
Mà 8 và 3 nguyên tố cùng nhau nên nó chia hết cho 24
Lời giải:
Ta có:
$N=2n^4-7n^3-2n^2+13n+6$
$=2n^3(n+1)-9n^2(n+1)+7n(n+1)+6(n+1)$
$=(n+1)(2n^3-9n^2+7n+6)$
$=(n+1)[2n^2(n-2)-5n(n-2)-3(n-2)]$
$=(n+1)(n-2)(2n^2-5n-3)$
$=(n+1)(n-2)[2n(n-3)+(n-3)]=(n+1)(n-2)(n-3)(2n+1)$
Vì $n-2,n-3$ là 2 số nguyên liên tiếp nên $(n-2)(n-3)\vdots 2(*)$
Mặt khác:
Nếu $n=3k$ thì $n-3\vdots 3\Rightarrow N\vdots 3$
Nếu $n=3k+1$ thì $2n+1=2(3k+1)+1=3(2k+1)\vdots 3\Rightarrow N\vdots 3$
Nếu $n=3k+2$ thì $n-2\vdots 3\Rightarrow N\vdots 3$
Vậy $N\vdots 3(**)$
Từ $(*); (**)$ mà $(2,3)=1$ nên $N\vdots 6$ (đpcm)
2. A = n3 + 6n2 - 19n - 24
= n3 + n2 + 5n2 + 5n - 24n - 24
= (n3 + n2) + (5n2 + 5n) - (24n + 24)
= n2(n + 1) + 5n(n + 1) - 24(n + 1)
= (n + 1)(n2 + 5n - 24)
= (n + 1)(n2 + 2n + 3n + 6 - 30)
= (n + 1)[n(n + 2) + 3(n + 2) - 30]
= (n + 1)[(n + 2)(n + 3) - 30]
= (n v+ 1)(n + 2)(n + 3) - (n + 1).30
Vì (n + 1)(n + 2)(n + 3) là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> (n + 1)(n + 2)(n + 3) chia hết cho 2 và 3
Mà (2,3) = 1
=> (n + 1)(n + 2)(n + 3) chia hết cho 6
Mà (n + 1).30 chia hết cho 6
=> A chia hết cho 6
Nhớ cho mình **** nha
1. \(\left(8346+5\right).8351^{633}+\left(8242-1\right).8241^{141}\)
= \(8346.8351^{633}+5.8351^{633}+8242.8241^{141}-8241^{141}\)
= \(\left(8346.8351^{633}+8242.8241^{141}\right)+\left(5.8351^{633}-8241^{141}\right)\)
Xét \(5.8351^{633}-8241^{141}\) (1)
Từ (1) => \(\left(5.8351-8241\right).\left(8351^{632}+8241^{140}\right)\) chia hết cho 26 (2)
Mặt khác \(8346.8351^{633}+8242.8241^{141}\) cũng chia hết cho 26 (3)
Từ (2);(3) => \(8351^{634}+8241^{142}\) chia hết cho 26
tại sao 2222 đồng dư với 3 (mod 7) thì cũng có nghĩ là 2222 đồng dư với -4 (mod 7)
\(M=2n^4+2n^3-9n^3-9n^2+7n^2+7n+6n+6=\left(n+1\right)\left(2n^3-9n^2+7n+6\right)=\left(n+1\right)\left(2n^3-4n^2-5n^2+10n-3n+6\right)\)
\(=\left(n+1\right)\left(n-2\right)\left(2n^2-5n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n^2+n-6n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n+1\right)\left(n-3\right)\)
\(=\left(n-1+2\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)+2\left(n-2\right)\left(n-3\right)\left(2n-2+3\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2\left(2n-2\right)\left(n-2\right)\left(n-3\right)+3.2\left(n-2\right)\left(n-3\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2.2\left(n-1\right)\left(n-2\right)\left(n-3\right)+6\left(n-2\right)\left(n-3\right)\)
ta có: (n-1)(n-2)(n-3) là tích của 3 số tự nhiên liên tiếp (với n>=3) => có 1 số chia hết cho 1, cho 2, cho 3
và vì (1;2;3)=1 => tích của chúng chia hết cho 1.2.3=6 => chia hết cho 6
tiếp theo với 4(n-1)(n-2)(n-3) cũng vậy
còn 6(n-2)(n-3) thì hiển nhiên chia hết cho 6 nhé
=> chia hết cho 6