Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dex dàng chứng minh \(\Delta BID\infty BHA\left(g-g\right)\Rightarrow\frac{ID}{AH}=\frac{BD}{AB}\)
mà AD là phân giác góc BAC =>\(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{AB+AC}\)
=>\(\frac{DI}{AH}=\frac{BC}{AB+AC}\left(ĐPCM\right)\)
b) cái ý này t chỉ bt dùng cách lớp 9 thôi, nhưng nếu bạn muốn xem lg kiểu lớp 9 thì xem bài 46 nâng cao phát triến toán 9 tập 1
( mà đề bài sai hay sao ý, phải là =(AB/BD)^2 chứ nhỉ !!
c)t nghĩ áp dụng câu b
^_^
Hình tự vẽ nhé
a,
Gọi H là chân đường cao hạ từ C, ABCH là hình vuông
\(\Rightarrow CH=BC=\frac{AD}{2}\)
Tam giác CDH có:
\(\widehat{CHD=90^o;CH=HD}\)
\(\Rightarrow CHD\)là tam giác vuông cân tại H
\(\Rightarrow\widehat{CDH}=\widehat{HCD}=45^o\)
\(\Rightarrow\widehat{BCD}=90^o+45^o=135^o\)
b, Có CH = AH
\(\Rightarrow\)Tam giác AHC vuông cân tại H. Do đó \(\widehat{ACH}=45^o\)
Mà \(\widehat{HCD}=45^o\)
\(\Rightarrow\widehat{ACD}=45^o+45^o=90^o\)
Vậy \(AC\perp CD\)( đpcm )
a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)
\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)
\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)
b, \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)
Do đó: BI là tia p/g của \(\widehat{ABC}\)
Mà CI là tia phân giác của \(\widehat{BCD}\)
\(\widehat{ABC}+\widehat{BCD}=180^0\)
\(\Rightarrow\widehat{BIC}=90^0\)
c, \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)
\(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\) (2)
Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)
Góc ACD bằng 90 độ
Trong tam giác ABC có:
AB=BC=\(\frac{1}{2}\)AD ; nên tam giác ABC cân tại B
=>\(\widehat{BAC}\)=\(\widehat{BCA}\)(1)
mà \(\widehat{ABC}\)+\(\widehat{BAC}\)+\(\widehat{BCA}\)=\(^{180^0}\)
\(\widehat{BAC}\)+\(\widehat{BCA}\)=\(^{180^0}\)-\(^{90^0}\)
\(\widehat{BAC}\)+\(\widehat{BCA}\)=\(^{90^0}\)(2)
Từ (1) và (2) suy ra:
\(\widehat{BAC}\) =\(\widehat{BCA}\) =\(^{ }45^0\)